Suppr超能文献

一种用于压缩感知磁共振成像中图像重建的复拟牛顿近端方法。

A Complex Quasi-Newton Proximal Method for Image Reconstruction in Compressed Sensing MRI.

作者信息

Hong Tao, Hernandez-Garcia Luis, Fessler Jeffrey A

机构信息

Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

IEEE Trans Comput Imaging. 2024;10:372-384. doi: 10.1109/tci.2024.3369404. Epub 2024 Feb 23.

Abstract

Model-based methods are widely used for reconstruction in compressed sensing (CS) magnetic resonance imaging (MRI), using regularizers to describe the images of interest. The reconstruction process is equivalent to solving a composite optimization problem. Accelerated proximal methods (APMs) are very popular approaches for such problems. This paper proposes a complex quasi-Newton proximal method (CQNPM) for the wavelet and total variation based CS MRI reconstruction. Compared with APMs, CQNPM requires fewer iterations to converge but needs to compute a more challenging proximal mapping called weighted proximal mapping (WPM). To make CQNPM more practical, we propose efficient methods to solve the related WPM. Numerical experiments on reconstructing non-Cartesian MRI data demonstrate the effectiveness and efficiency of CQNPM.

摘要

基于模型的方法在压缩感知(CS)磁共振成像(MRI)重建中被广泛使用,使用正则化器来描述感兴趣的图像。重建过程等同于解决一个复合优化问题。加速近端方法(APM)是解决此类问题非常流行的方法。本文提出了一种基于小波和全变差的CS MRI重建的复拟牛顿近端方法(CQNPM)。与APM相比,CQNPM收敛所需的迭代次数更少,但需要计算一个更具挑战性的近端映射,称为加权近端映射(WPM)。为了使CQNPM更实用,我们提出了有效的方法来解决相关的WPM。对非笛卡尔MRI数据进行重建的数值实验证明了CQNPM的有效性和效率。

相似文献

4
Pseudo-Polar Fourier Transform-Based Compressed Sensing MRI.基于伪极傅里叶变换的压缩感知磁共振成像
IEEE Trans Biomed Eng. 2017 Apr;64(4):816-825. doi: 10.1109/TBME.2016.2578930. Epub 2016 Jun 9.
9
Exploiting the wavelet structure in compressed sensing MRI.利用压缩感知磁共振成像中的小波结构。
Magn Reson Imaging. 2014 Dec;32(10):1377-89. doi: 10.1016/j.mri.2014.07.016. Epub 2014 Aug 19.

引用本文的文献

本文引用的文献

2
Plug-and-Play Image Restoration With Deep Denoiser Prior.基于深度去噪器先验的即插即用图像恢复
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6360-6376. doi: 10.1109/TPAMI.2021.3088914. Epub 2022 Sep 14.
6
MoDL: Model-Based Deep Learning Architecture for Inverse Problems.MoDL:基于模型的深度学习架构用于反问题。
IEEE Trans Med Imaging. 2019 Feb;38(2):394-405. doi: 10.1109/TMI.2018.2865356. Epub 2018 Aug 13.
9
Compressive sensing via nonlocal low-rank regularization.基于非局部低秩正则化的压缩感知。
IEEE Trans Image Process. 2014 Aug;23(8):3618-32. doi: 10.1109/TIP.2014.2329449. Epub 2014 Jun 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验