Hong Tao, Hernandez-Garcia Luis, Fessler Jeffrey A
Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
IEEE Trans Comput Imaging. 2024;10:372-384. doi: 10.1109/tci.2024.3369404. Epub 2024 Feb 23.
Model-based methods are widely used for reconstruction in compressed sensing (CS) magnetic resonance imaging (MRI), using regularizers to describe the images of interest. The reconstruction process is equivalent to solving a composite optimization problem. Accelerated proximal methods (APMs) are very popular approaches for such problems. This paper proposes a complex quasi-Newton proximal method (CQNPM) for the wavelet and total variation based CS MRI reconstruction. Compared with APMs, CQNPM requires fewer iterations to converge but needs to compute a more challenging proximal mapping called weighted proximal mapping (WPM). To make CQNPM more practical, we propose efficient methods to solve the related WPM. Numerical experiments on reconstructing non-Cartesian MRI data demonstrate the effectiveness and efficiency of CQNPM.
基于模型的方法在压缩感知(CS)磁共振成像(MRI)重建中被广泛使用,使用正则化器来描述感兴趣的图像。重建过程等同于解决一个复合优化问题。加速近端方法(APM)是解决此类问题非常流行的方法。本文提出了一种基于小波和全变差的CS MRI重建的复拟牛顿近端方法(CQNPM)。与APM相比,CQNPM收敛所需的迭代次数更少,但需要计算一个更具挑战性的近端映射,称为加权近端映射(WPM)。为了使CQNPM更实用,我们提出了有效的方法来解决相关的WPM。对非笛卡尔MRI数据进行重建的数值实验证明了CQNPM的有效性和效率。