Suppr超能文献

一种用于压缩感知磁共振成像中图像重建的复拟牛顿近端方法。

A Complex Quasi-Newton Proximal Method for Image Reconstruction in Compressed Sensing MRI.

作者信息

Hong Tao, Hernandez-Garcia Luis, Fessler Jeffrey A

机构信息

Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

IEEE Trans Comput Imaging. 2024;10:372-384. doi: 10.1109/tci.2024.3369404. Epub 2024 Feb 23.

Abstract

Model-based methods are widely used for reconstruction in compressed sensing (CS) magnetic resonance imaging (MRI), using regularizers to describe the images of interest. The reconstruction process is equivalent to solving a composite optimization problem. Accelerated proximal methods (APMs) are very popular approaches for such problems. This paper proposes a complex quasi-Newton proximal method (CQNPM) for the wavelet and total variation based CS MRI reconstruction. Compared with APMs, CQNPM requires fewer iterations to converge but needs to compute a more challenging proximal mapping called weighted proximal mapping (WPM). To make CQNPM more practical, we propose efficient methods to solve the related WPM. Numerical experiments on reconstructing non-Cartesian MRI data demonstrate the effectiveness and efficiency of CQNPM.

摘要

基于模型的方法在压缩感知(CS)磁共振成像(MRI)重建中被广泛使用,使用正则化器来描述感兴趣的图像。重建过程等同于解决一个复合优化问题。加速近端方法(APM)是解决此类问题非常流行的方法。本文提出了一种基于小波和全变差的CS MRI重建的复拟牛顿近端方法(CQNPM)。与APM相比,CQNPM收敛所需的迭代次数更少,但需要计算一个更具挑战性的近端映射,称为加权近端映射(WPM)。为了使CQNPM更实用,我们提出了有效的方法来解决相关的WPM。对非笛卡尔MRI数据进行重建的数值实验证明了CQNPM的有效性和效率。

相似文献

1
A Complex Quasi-Newton Proximal Method for Image Reconstruction in Compressed Sensing MRI.
IEEE Trans Comput Imaging. 2024;10:372-384. doi: 10.1109/tci.2024.3369404. Epub 2024 Feb 23.
2
Provable Preconditioned Plug-and-Play Approach for Compressed Sensing MRI Reconstruction.
IEEE Trans Comput Imaging. 2024;10:1476-1488. doi: 10.1109/tci.2024.3477329. Epub 2024 Oct 9.
3
Compressed sensing magnetic resonance imaging based on shearlet sparsity and nonlocal total variation.
J Med Imaging (Bellingham). 2017 Apr;4(2):026003. doi: 10.1117/1.JMI.4.2.026003. Epub 2017 Jun 28.
4
Pseudo-Polar Fourier Transform-Based Compressed Sensing MRI.
IEEE Trans Biomed Eng. 2017 Apr;64(4):816-825. doi: 10.1109/TBME.2016.2578930. Epub 2016 Jun 9.
6
Sparsity-constrained SENSE reconstruction: an efficient implementation using a fast composite splitting algorithm.
Magn Reson Imaging. 2013 Sep;31(7):1218-27. doi: 10.1016/j.mri.2012.12.003. Epub 2013 May 16.
7
Complex-valued image reconstruction for compressed sensing MRI using hierarchical constraint.
Magn Reson Imaging. 2025 Jan;115:110267. doi: 10.1016/j.mri.2024.110267. Epub 2024 Oct 23.
8
SC-GROG followed by L+S reconstruction with multiple sparsity constraints for accelerated Golden-angle-radial DCE-MRI.
PLoS One. 2025 Feb 14;20(2):e0318102. doi: 10.1371/journal.pone.0318102. eCollection 2025.
9
Exploiting the wavelet structure in compressed sensing MRI.
Magn Reson Imaging. 2014 Dec;32(10):1377-89. doi: 10.1016/j.mri.2014.07.016. Epub 2014 Aug 19.
10
Accelerating patch-based directional wavelets with multicore parallel computing in compressed sensing MRI.
Magn Reson Imaging. 2015 Jun;33(5):649-58. doi: 10.1016/j.mri.2015.01.014. Epub 2015 Jan 22.

引用本文的文献

1
Provable Preconditioned Plug-and-Play Approach for Compressed Sensing MRI Reconstruction.
IEEE Trans Comput Imaging. 2024;10:1476-1488. doi: 10.1109/tci.2024.3477329. Epub 2024 Oct 9.

本文引用的文献

1
Revisiting [Formula: see text]-wavelet compressed-sensing MRI in the era of deep learning.
Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2201062119. doi: 10.1073/pnas.2201062119. Epub 2022 Aug 8.
2
Plug-and-Play Image Restoration With Deep Denoiser Prior.
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6360-6376. doi: 10.1109/TPAMI.2021.3088914. Epub 2022 Sep 14.
3
Plug-and-Play Methods for Magnetic Resonance Imaging: Using Denoisers for Image Recovery.
IEEE Signal Process Mag. 2020 Jan;37(1):105-116. doi: 10.1109/msp.2019.2949470. Epub 2020 Jan 17.
4
Optimization Methods for Magnetic Resonance Image Reconstruction: Key Models and Optimization Algorithms.
IEEE Signal Process Mag. 2020 Jan;37(1):33-40. doi: 10.1109/MSP.2019.2943645. Epub 2020 Jan 17.
5
Accelerating Non-Cartesian MRI Reconstruction Convergence Using k-Space Preconditioning.
IEEE Trans Med Imaging. 2020 May;39(5):1646-1654. doi: 10.1109/TMI.2019.2954121. Epub 2019 Nov 19.
6
MoDL: Model-Based Deep Learning Architecture for Inverse Problems.
IEEE Trans Med Imaging. 2019 Feb;38(2):394-405. doi: 10.1109/TMI.2018.2865356. Epub 2018 Aug 13.
8
Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker.
Magn Reson Med. 2015 Jan;73(1):82-101. doi: 10.1002/mrm.25358. Epub 2014 Jul 17.
9
Compressive sensing via nonlocal low-rank regularization.
IEEE Trans Image Process. 2014 Aug;23(8):3618-32. doi: 10.1109/TIP.2014.2329449. Epub 2014 Jun 6.
10
Augmented Lagrangian with variable splitting for faster non-Cartesian L1-SPIRiT MR image reconstruction.
IEEE Trans Med Imaging. 2014 Feb;33(2):351-61. doi: 10.1109/TMI.2013.2285046. Epub 2013 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验