Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843.
School of Molecular Sciences, Arizona State University, Tempe, AZ 85287.
Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24542-24550. doi: 10.1073/pnas.1915312116. Epub 2019 Nov 21.
Telomerase is essential for maintaining telomere integrity. Although telomerase function is widely conserved, the integral telomerase RNA (TR) that provides a template for telomeric DNA synthesis has diverged dramatically. Nevertheless, TR molecules retain 2 highly conserved structural domains critical for catalysis: a template-proximal pseudoknot (PK) structure and a downstream stem-loop structure. Here we introduce the authentic TR from the plant , called AtTR, identified through next-generation sequencing of RNAs copurifying with TERT. This RNA is distinct from the RNA previously described as the templating telomerase RNA, AtTER1. AtTR is a 268-nt Pol III transcript necessary for telomere maintenance in vivo and sufficient with TERT to reconstitute telomerase activity in vitro. Bioinformatics analysis identified 85 AtTR orthologs from 3 major clades of plants: angiosperms, gymnosperms, and lycophytes. Through phylogenetic comparisons, a secondary structure model conserved among plant TRs was inferred and verified using in vitro and in vivo chemical probing. The conserved plant TR structure contains a template-PK core domain enclosed by a P1 stem and a 3' long-stem P4/5/6, both of which resemble a corresponding structural element in ciliate and vertebrate TRs. However, the plant TR contains additional stems and linkers within the template-PK core, allowing for expansion of PK structure from the simple PK in the smaller ciliate TR during evolution. Thus, the plant TR provides an evolutionary bridge that unites the disparate structures of previously characterized TRs from ciliates and vertebrates.
端粒酶对于维持端粒的完整性至关重要。尽管端粒酶的功能广泛保守,但提供端粒 DNA 合成模板的完整端粒酶 RNA(TR)已经发生了巨大的分化。然而,TR 分子保留了 2 个高度保守的结构域,这些结构域对催化至关重要:一个靠近模板的假结(PK)结构和一个下游的茎环结构。在这里,我们通过与 TERT 共纯化的 RNA 的下一代测序,引入了植物中真正的 TR,称为 AtTR。这种 RNA 与先前被描述为模板端粒酶 RNA 的 AtTER1 不同。AtTR 是一个 268nt 的 Pol III 转录本,对于体内端粒的维持是必需的,并且与 TERT 一起足以在体外重新构成端粒酶活性。生物信息学分析从被子植物、裸子植物和石松植物这 3 个主要植物类群中鉴定出了 85 个 AtTR 同源物。通过系统发育比较,推断并验证了植物 TR 之间保守的二级结构模型,该模型使用了体外和体内化学探测。保守的植物 TR 结构包含一个模板-PK 核心结构域,被 P1 茎和 3'长茎 P4/5/6 包围,这两个结构类似于纤毛虫和脊椎动物 TR 中的相应结构元件。然而,植物 TR 在模板-PK 核心内包含额外的茎和连接子,允许在进化过程中,从较小的纤毛虫 TR 中的简单 PK 扩展 PK 结构。因此,植物 TR 提供了一个进化桥梁,将以前从纤毛虫和脊椎动物中鉴定出的不同结构的 TR 联系起来。