Department of Geography and Spatial Sciences, University of Delaware, Newark, DE 19716;
Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716.
Proc Natl Acad Sci U S A. 2019 Dec 10;116(50):25034-25041. doi: 10.1073/pnas.1910935116. Epub 2019 Nov 21.
Sustainable food systems aim to provide sufficient and nutritious food, while maximizing climate resilience and minimizing resource demands as well as negative environmental impacts. Historical practices, notably the Green Revolution, prioritized the single objective to maximize production over other nutritional and environmental dimensions. We quantitatively assess outcomes of alternative production decisions across multiple objectives using India's rice-dominated monsoon cereal production as an example. We perform a series of optimizations to maximize nutrient production (i.e., protein and iron), minimize greenhouse gas (GHG) emissions and resource use (i.e., water and energy), or maximize resilience to climate extremes. We find that increasing the area under coarse cereals (i.e., millets, sorghum) improves nutritional supply (on average, +1% to +5% protein and +5% to +49% iron), increases climate resilience (1% to 13% fewer calories lost during an extreme dry year), and reduces GHGs (-2% to -13%) and demand for irrigation water (-3% to -21%) and energy (-2% to -12%) while maintaining calorie production and cropped area. The extent of these benefits partly depends on the feasibility of switching cropped area from rice to coarse cereals. Based on current production practices in 2 states, supporting these cobenefits could require greater manure and draft power but similar or less labor, fertilizer, and machinery. National- and state-level strategies considering multiple objectives in decisions about cereal production can move beyond many shortcomings of the Green Revolution while reinforcing the benefits. This ability to realistically incorporate multiple dimensions into intervention planning and implementation is the crux of sustainable food production systems worldwide.
可持续粮食系统旨在提供充足和营养的食物,同时最大限度地提高气候适应能力,最大限度地减少资源需求和负面环境影响。历史上的做法,特别是绿色革命,优先考虑单一目标,即最大限度地提高产量,而忽略了其他营养和环境方面。我们使用印度以水稻为主的季风谷类生产为例,通过定量评估多个目标下的替代生产决策的结果。我们进行了一系列优化,以最大限度地提高营养物质的生产(即蛋白质和铁),最大限度地减少温室气体(GHG)排放和资源利用(即水和能源),或最大限度地提高对气候极端事件的适应能力。我们发现,增加粗粮(即小米、高粱)的种植面积可以改善营养供应(平均增加 1%至 5%的蛋白质和 5%至 49%的铁),提高气候适应能力(在极端干旱年份减少 1%至 13%的卡路里损失),减少 GHG(减少 2%至 13%)和灌溉用水(减少 3%至 21%)和能源需求(减少 2%至 12%),同时保持卡路里的生产和作物种植面积。这些好处的程度部分取决于从水稻转向粗粮种植的可行性。基于目前两个州的生产实践,如果要支持这些共同效益,可能需要更多的粪便和牵引力,但所需的劳动力、肥料和机械可能相同或更少。在考虑到粮食生产决策中的多个目标的国家和州一级战略中,可以克服绿色革命的许多缺点,同时加强其效益。这种将多个维度切实纳入干预规划和实施的能力是全球可持续粮食生产系统的关键。