文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Engineering Nanoparticles to Reprogram the Tumor Immune Microenvironment for Improved Cancer Immunotherapy.

作者信息

Saeed Madiha, Gao Jing, Shi Yang, Lammers Twan, Yu Haijun

机构信息

State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.

出版信息

Theranostics. 2019 Oct 17;9(26):7981-8000. doi: 10.7150/thno.37568. eCollection 2019.


DOI:10.7150/thno.37568
PMID:31754376
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6857062/
Abstract

Immunotherapy is rapidly maturing towards extensive clinical use. However, it does not work well in large patient populations because of an immunosuppressed microenvironment and limited reinvigoration of antitumor immunity. The tumor microenvironment is a complex milieu in which the principles of physiology and anatomy are defied and which is considered an immune-privileged site promoting T cell exhaustion. Tremendous research interest exists in developing nanoparticle-based approaches to modulate antitumor immune responses. The increasing use of immunotherapies in the clinic requires robust programming of immune cells to boost antitumor immunity. This review summarizes recent advances in the engineering of nanoparticles for improved anticancer immunotherapy. It discusses emerging nanoparticle-based approaches for the modulation of tumor cells and immune cells, such as dendritic cells, T cells and tumor-associated macrophages, with the intention to overcome challenges currently faced in the clinic. Furthermore, this review describes potentially curative combination therapeutic approaches to provoke effective tumor antigen-specific immune responses. We foresee a future in which improvement in patient's surveillance will become a mainstream practice.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/88bcaed19b7d/thnov09p7981g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/ab73218f5699/thnov09p7981g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/945cc20253d6/thnov09p7981g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/a40f35efc968/thnov09p7981g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/f1c9994e0c9b/thnov09p7981g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/f338d7f1c622/thnov09p7981g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/3ac762c9aeba/thnov09p7981g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/b7643b3973f2/thnov09p7981g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/c4f38ed68e7f/thnov09p7981g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/cd2dda2a8bad/thnov09p7981g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/88bcaed19b7d/thnov09p7981g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/ab73218f5699/thnov09p7981g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/945cc20253d6/thnov09p7981g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/a40f35efc968/thnov09p7981g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/f1c9994e0c9b/thnov09p7981g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/f338d7f1c622/thnov09p7981g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/3ac762c9aeba/thnov09p7981g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/b7643b3973f2/thnov09p7981g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/c4f38ed68e7f/thnov09p7981g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/cd2dda2a8bad/thnov09p7981g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ad6/6857062/88bcaed19b7d/thnov09p7981g010.jpg

相似文献

[1]
Engineering Nanoparticles to Reprogram the Tumor Immune Microenvironment for Improved Cancer Immunotherapy.

Theranostics. 2019-10-17

[2]
Nano-Immune-Engineering Approaches to Advance Cancer Immunotherapy: Lessons from Ultra-pH-Sensitive Nanoparticles.

Acc Chem Res. 2020-11-17

[3]
Immunomodulatory nanoparticles activate cytotoxic T cells for enhancement of the effect of cancer immunotherapy.

Nanoscale. 2024-10-3

[4]
Engineered Nanomaterials for Tumor Immune Microenvironment Modulation in Cancer Immunotherapy.

Chemistry. 2024-6-6

[5]
Non-viral gene delivery for cancer immunotherapy.

J Gene Med. 2019-5-28

[6]
Regulation of cancer-immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020-7

[7]
Emerging Prospects for Nanoparticle-Enabled Cancer Immunotherapy.

J Immunol Res. 2020

[8]
Optimizing Tumor Microenvironment for Cancer Immunotherapy: β-Glucan-Based Nanoparticles.

Front Immunol. 2018-2-26

[9]
Nanoparticle-Mediated Remodeling of the Tumor Microenvironment to Enhance Immunotherapy.

ACS Nano. 2018-12-6

[10]
Combining Nanomedicine and Immunotherapy.

Acc Chem Res. 2019-5-23

引用本文的文献

[1]
Nanoengineered-based delivery systems to modulate CD4 T cell responses in cancer: emerging paradigms in cancer immunotherapy.

Front Pharmacol. 2025-8-11

[2]
Immune evasion in cancer: mechanisms and cutting-edge therapeutic approaches.

Signal Transduct Target Ther. 2025-7-31

[3]
A comprehensive review of using nanomaterials in cancer immunotherapy: Pros and Cons of clinical usage.

3 Biotech. 2025-7

[4]
Nanocarriers for cutting-edge cancer immunotherapies.

J Transl Med. 2025-4-16

[5]
For and against tumor microenvironment: Nanoparticle-based strategies for active cancer therapy.

Mater Today Bio. 2025-3-1

[6]
Exploring lung cancer microenvironment: pathways and nanoparticle-based therapies.

Discov Oncol. 2025-2-11

[7]
Nanotheranostics in Breast Cancer Bone Metastasis: Advanced Research Progress and Future Perspectives.

Pharmaceutics. 2024-11-21

[8]
Iron Oxide Nanoparticles Induce Macrophage Secretion of ATP and HMGB1 to Enhance Irradiation-Led Immunogenic Cell Death.

Bioconjug Chem. 2025-1-15

[9]
Genetically engineered cellular nanoparticles loaded with curcuminoids for cancer immunotherapy.

Theranostics. 2024

[10]
Innovative optical imaging strategies for monitoring immunotherapy in the tumor microenvironments.

Cancer Med. 2024-10

本文引用的文献

[1]
Material design for lymph node drug delivery.

Nat Rev Mater. 2019-6

[2]
Combining Nanomedicine and Immunotherapy.

Acc Chem Res. 2019-5-23

[3]
Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice.

Nat Commun. 2019-5-2

[4]
Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses.

Nat Biomed Eng. 2018-7-16

[5]
TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy.

Nat Biomed Eng. 2018-5-21

[6]
Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy.

Nat Biomed Eng. 2018-3-26

[7]
Checkpoint inhibition in the bone marrow.

Nat Biomed Eng. 2018-11

[8]
Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy.

Nat Biomed Eng. 2018-10-29

[9]
Immunostimulatory nanomedicines synergize with checkpoint blockade immunotherapy to eradicate colorectal tumors.

Nat Commun. 2019-4-23

[10]
Non-viral gene delivery for cancer immunotherapy.

J Gene Med. 2019-5-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索