Suppr超能文献

利用总体风险比模型评估医疗干预措施降低死亡率的效果时可能存在的偏倚。

Potential Bias Associated with Modeling the Effectiveness of Healthcare Interventions in Reducing Mortality Using an Overall Hazard Ratio.

机构信息

Drug Policy Program, Center for Research and Teaching in Economics (CIDE)-CONACyT, Circuito Tecnopolo Norte 117, Col. Tecnopolo Pocitos II, 20313, Aguascalientes, AGS, Mexico.

Division of Health Policy and Management, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.

出版信息

Pharmacoeconomics. 2020 Mar;38(3):285-296. doi: 10.1007/s40273-019-00859-5.

Abstract

BACKGROUND

Clinical trials often report intervention efficacy in terms of the reduction in all-cause mortality between the treatment and control arms (i.e., an overall hazard ratio [oHR]) instead of the reduction in disease-specific mortality (i.e., a disease-specific hazard ratio [dsHR]). Using oHR to reduce all-cause mortality beyond the time horizon of the trial may introduce bias if the relative proportion of other-cause mortality increases with age. We sought to quantify this oHR extrapolation bias and propose a new approach to overcome this bias.

METHODS

We simulated a hypothetical cohort of patients with a generic disease that increased background mortality by a constant additive disease-specific rate. We quantified the bias in terms of the percentage change in life expectancy gains with the intervention under an oHR compared with a dsHR approach as a function of the cohort start age, the disease-specific mortality rate, dsHR, and the duration of the intervention's effect. We then quantified the bias in a cost-effectiveness analysis (CEA) of implantable cardioverter-defibrillators based on efficacy estimates from a clinical trial.

RESULTS

For a cohort of 50-year-old patients with a disease-specific mortality of 0.05, a dsHR of 0.5, a calculated oHR of 0.55, and a lifetime duration of effect, the bias was 28%. We varied these key parameters over wide ranges and the resulting bias ranged between 3 and 140%. In the CEA, the use of oHR as the intervention's effectiveness overestimated quality-adjusted life expectancy by 9% and costs by 3%, biasing the incremental cost-effectiveness ratio by - 6%.

CONCLUSIONS

The use of an oHR approach to model the intervention's effectiveness beyond the time horizon of the trial overestimates its benefits. In CEAs, this bias could decrease the cost of a QALY, overestimating interventions' cost effectiveness.

摘要

背景

临床试验通常以治疗组和对照组之间全因死亡率的降低来报告干预效果(即总体风险比 [oHR]),而不是疾病特异性死亡率的降低(即疾病特异性风险比 [dsHR])。如果其他原因死亡率随年龄的增加而相对增加,使用 oHR 来降低试验时间范围之外的全因死亡率可能会引入偏倚。我们试图量化这种 oHR 外推偏差,并提出一种克服这种偏差的新方法。

方法

我们模拟了一个具有通用疾病的假设患者队列,该疾病以恒定的附加疾病特异性速率增加背景死亡率。我们根据 oHR 与 dsHR 方法下干预的预期寿命增益百分比变化,将偏倚量化为队列起始年龄、疾病特异性死亡率、dsHR 和干预效果持续时间的函数。然后,我们根据临床试验的疗效估计,在植入式心脏复律除颤器的成本效益分析(CEA)中量化了偏倚。

结果

对于一个 50 岁的患者队列,疾病特异性死亡率为 0.05,dsHR 为 0.5,计算出的 oHR 为 0.55,以及终身效应持续时间,偏倚为 28%。我们在广泛的范围内改变了这些关键参数,结果偏倚在 3%到 140%之间。在 CEA 中,使用 oHR 作为干预措施的有效性来估计质量调整生命预期高估了 9%,成本高估了 3%,从而使增量成本效益比偏差为 -6%。

结论

使用 oHR 方法来模拟试验时间范围之外的干预效果会高估其益处。在 CEA 中,这种偏差可能会降低 QALY 的成本,高估干预措施的成本效益。

相似文献

7

本文引用的文献

1
Using simulation studies to evaluate statistical methods.运用模拟研究评估统计方法。
Stat Med. 2019 May 20;38(11):2074-2102. doi: 10.1002/sim.8086. Epub 2019 Jan 16.
2
An Overview of R in Health Decision Sciences.健康决策科学中的 R 概述。
Med Decis Making. 2017 Oct;37(7):735-746. doi: 10.1177/0272989X16686559. Epub 2017 Jan 6.
6
Survival extrapolation in the presence of cause specific hazards.存在特定病因风险时的生存外推法。
Stat Med. 2015 Feb 28;34(5):796-811. doi: 10.1002/sim.6375. Epub 2014 Nov 20.
7
United States life tables, 2009.《2009年美国生命表》
Natl Vital Stat Rep. 2014 Jan 6;62(7):1-63.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验