Systems Biology Initiative, School of Biotechnology and Biomolecular Science, University of New South Wales, NSW 2052, Australia.
Biomedical Imaging Facility, University of New South Wales, NSW 2052, Australia.
J Mol Biol. 2020 Jan 17;432(2):448-466. doi: 10.1016/j.jmb.2019.11.006. Epub 2019 Nov 20.
Crosstalk exists when two or more post-translational modifications, nearby in sequence or 3D space, affect each other or a protein's interactions. Saccharomyces cerevisiae protein Npl3p has six repeats of sequence SRGG, in a disordered domain, which can carry arginine methylation and serine phosphorylation. Crosstalk of the modifications controls Npl3p interactions with nuclear import, export, and other proteins. Here, we asked whether repeated SRGG motifs existed in other S. cerevisiae proteins and whether they serve a related function. Two other proteins had multiple SRGG motifs: Nop1p (fibrillarin) and Gar1p, both nucleolar proteins, which had nine and four motifs, respectively. For Nop1p, we first showed it to be extensively methylated in vivo. We then showed that the Nop1p SRGG motif is subjected to methylation by Hmt1p, phosphorylation by Sky1p, and Glc7p dephosphorylation and that there is crosstalk whereby phosphorylation blocks methylation. This is consistent with our recent motif analysis of Hmt1p, which revealed a negative specificity for acidic residues at -1 and -2 positions. On knockout of HMT1, Nop1p-GFP localization was not typically nucleolar. Conditional two-hybrid analysis, of Nop1p with C/D box small ribonuclear proteins Nop56p and Nop58p, suggested this may be associated with decreased protein-protein interactions on loss of arginine methylation. The effect of SRGG phosphorylation on the interactions of Nop1p remains unknown yet was predicted to cause a structural disorder-to-order transition in the Nop1p N-terminal domain. The SRGG motif is one of very few examples of modification crosstalk that has related functions in multiple proteins from the same species.
当两个或更多个翻译后修饰,在序列或 3D 空间上彼此相邻,会相互影响或影响蛋白质的相互作用时,就会发生串扰。酿酒酵母蛋白 Npl3p 具有六个无序结构域中的序列 SRGG 重复序列,可携带精氨酸甲基化和丝氨酸磷酸化。修饰的串扰控制 Npl3p 与核输入、输出和其他蛋白质的相互作用。在这里,我们询问其他酿酒酵母蛋白中是否存在重复的 SRGG 基序,以及它们是否具有相关功能。另外两种蛋白质具有多个 SRGG 基序:Nop1p(核仁纤维蛋白)和 Gar1p,均为核仁蛋白,分别具有九个和四个基序。对于 Nop1p,我们首先证明它在体内广泛甲基化。然后,我们表明 Nop1p SRGG 基序可被 Hmt1p 甲基化、Sky1p 磷酸化、Glc7p 去磷酸化,并且存在串扰,即磷酸化阻止甲基化。这与我们最近对 Hmt1p 的基序分析一致,该分析显示其对 -1 和 -2 位酸性残基具有负特异性。在 HMT1 敲除后,Nop1p-GFP 定位通常不是核仁。与 C/D 框小核仁 RNA 蛋白 Nop56p 和 Nop58p 的条件双杂交分析表明,这可能与精氨酸甲基化丢失导致的蛋白质-蛋白质相互作用减少有关。SRGG 磷酸化对 Nop1p 相互作用的影响尚不清楚,但据预测会导致 Nop1p N 端结构域从无序到有序的构象转变。SRGG 基序是在同一物种的多个蛋白质中具有相关功能的极少数修饰串扰之一。