Suppr超能文献

基于共表达网络分析鉴定乳腺癌的枢纽基因作为预测不同分期的工具。

Identification of Hub Genes Using Co-Expression Network Analysis in Breast Cancer as a Tool to Predict Different Stages.

机构信息

Department of General Surgery, Luoyang First People's Hospital, Luoyang, Henan, China (mainland).

Department of Breast Surgery, Guangdong Province Chinese Traditional Medical Hospital, Guangzhou, Guangdong, China (mainland).

出版信息

Med Sci Monit. 2019 Nov 23;25:8873-8890. doi: 10.12659/MSM.919046.

Abstract

BACKGROUND Breast cancer has a high mortality rate and is the most common cancer of women worldwide. Our gene co-expression network analysis identified the genes closely related to the pathological stage of breast cancer. MATERIAL AND METHODS We performed weighted gene co-expression network analysis (WGCNA) from the Gene Expression Omnibus (GEO) database, and performed pathway enrichment analysis on genes from significant modules. RESULTS A non-metastatic sample (374) of breast cancer from GSE102484 was used to construct the gene co-expression network. All 49 hub genes have been shown to be upregulated, and 19 of the 49 hub genes are significantly upregulated in breast cancer tissue. The roles of the genes CASC5, CKAP2L, FAM83D, KIF18B, KIF23, SKA1, GINS1, CDCA5, and MCM6 in breast cancer are unclear, so in order to better reveal the staging of breast cancer markers, it is necessary to study those hub genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes indicated that 49 hub genes were enriched to sister chromatid cohesion, spindle midzone, microtubule motor activity, cell cycle, and something else. Additionally, there is an independent data set - GSE20685 - for module preservation analysis, survival analysis, and gene validation. CONCLUSIONS This study identified 49 hub genes that were associated with pathologic stage of breast cancer, 19 of which were significantly upregulated in breast cancer. Risk stratification, therapeutic decision making, and prognosis predication might be improved by our study results. This study provides new insights into biomarkers of breast cancer, which might influence the future direction of breast cancer research.

摘要

背景

乳腺癌死亡率高,是全球女性最常见的癌症。我们的基因共表达网络分析确定了与乳腺癌病理分期密切相关的基因。

材料与方法

我们从基因表达综合数据库(GEO)中进行了加权基因共表达网络分析(WGCNA),并对显著模块中的基因进行了通路富集分析。

结果

我们使用 GSE102484 数据库中的非转移性乳腺癌样本(374 例)构建了基因共表达网络。所有 49 个枢纽基因均显示上调,其中 19 个枢纽基因在乳腺癌组织中显著上调。CASC5、CKAP2L、FAM83D、KIF18B、KIF23、SKA1、GINS1、CDCA5 和 MCM6 等基因在乳腺癌中的作用尚不清楚,因此为了更好地揭示乳腺癌标志物的分期,有必要研究这些枢纽基因。基因本体论和京都基因与基因组百科全书表明,49 个枢纽基因富集到姐妹染色单体黏合、纺锤体中间区、微管马达活性、细胞周期等。此外,还有一个独立的数据集——GSE20685——用于模块保存分析、生存分析和基因验证。

结论

本研究确定了 49 个与乳腺癌病理分期相关的枢纽基因,其中 19 个在乳腺癌中显著上调。我们的研究结果可能改善风险分层、治疗决策和预后预测。本研究为乳腺癌的生物标志物提供了新的见解,可能会影响乳腺癌研究的未来方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验