Suppr超能文献

PBS3 和 EPS1 完成拟南芥中异分支酸的水杨酸生物合成。

PBS3 and EPS1 Complete Salicylic Acid Biosynthesis from Isochorismate in Arabidopsis.

机构信息

Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.

Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Mol Plant. 2019 Dec 2;12(12):1577-1586. doi: 10.1016/j.molp.2019.11.005. Epub 2019 Nov 22.

Abstract

Salicylic acid (SA) is an important phytohormone mediating both local and systemic defense responses in plants. Despite over half a century of research, how plants biosynthesize SA remains unresolved. In Arabidopsis, a major part of SA is derived from isochorismate, a key intermediate produced by the isochorismate synthase, which is reminiscent of SA biosynthesis in bacteria. Whereas bacteria employ an isochorismate pyruvate lyase (IPL) that catalyzes the turnover of isochorismate to pyruvate and SA, plants do not contain an IPL ortholog and generate SA from isochorismate through an unknown mechanism. Combining genetic and biochemical approaches, we delineated the SA biosynthetic pathway downstream of isochorismate in Arabidopsis. We found that PBS3, a GH3 acyl adenylase-family enzyme important for SA accumulation, catalyzes ATP- and Mg-dependent conjugation of L-glutamate primarily to the 8-carboxyl of isochorismate and yields the key SA biosynthetic intermediate, isochorismoyl-glutamate A. Moreover, we discovered that EPS1, a BAHD acyltransferase-family protein with a previously implicated role in SA accumulation upon pathogen attack, harbors a noncanonical active site and an unprecedented isochorismoyl-glutamate A pyruvoyl-glutamate lyase activity that produces SA from the isochorismoyl-glutamate A substrate. Together, PBS3 and EPS1 form a two-step metabolic pathway to produce SA from isochorismate in Arabidopsis, which is distinct from how SA is biosynthesized in bacteria. This study closes a major knowledge gap in plant SA metabolism and would help develop new strategies for engineering disease resistance in crop plants.

摘要

水杨酸(SA)是一种重要的植物激素,介导植物局部和系统防御反应。尽管经过半个多世纪的研究,植物如何生物合成 SA 仍然没有得到解决。在拟南芥中,SA 的主要部分来自异分支酸,这是分支酸合酶产生的关键中间产物,这让人联想到细菌中的 SA 生物合成。而细菌则使用异分支酸丙酮酸裂解酶(IPL),该酶催化异分支酸转化为丙酮酸和 SA,植物中没有 IPL 直系同源物,而是通过未知机制从异分支酸产生 SA。通过遗传和生化方法相结合,我们在拟南芥中描绘了异分支酸下游的 SA 生物合成途径。我们发现,PBS3 是一种 GH3 酰基腺苷酸酶家族的酶,对 SA 积累很重要,它催化 ATP 和 Mg 依赖性的 L-谷氨酸与异分支酸的 8-羧基主要结合,并产生 SA 生物合成的关键中间产物,异分支酰基-谷氨酸 A。此外,我们发现 EPS1 是一种 BAHD 酰基转移酶家族的蛋白,以前在病原体攻击时与 SA 积累有关,它具有非典型的活性位点和前所未有的异分支酰基-谷氨酸 A 丙酮酸-谷氨酸裂解酶活性,能够从异分支酰基-谷氨酸 A 底物产生 SA。PBS3 和 EPS1 共同形成了一个两步代谢途径,用于在拟南芥中从异分支酸产生 SA,这与细菌中 SA 的生物合成途径不同。这项研究填补了植物 SA 代谢中的一个主要知识空白,并将有助于开发在作物植物中工程抗病性的新策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验