Suppr超能文献

十字花目植物中基于异分支酸的水杨酸生物合成的出现。

Emergence of isochorismate-based salicylic acid biosynthesis within Brassicales.

作者信息

Hong Kunqi, Nakano Masahito, Tang Ying, Jeanguenin Linda, Kang Wenshang, Wang Yongliang, Zuo Lu, Li Pengyue, He Jingjng, Jiang Wanqing, Huang Ruidong, Matsui Hidenori, Wang Yiming, Nakagami Hirofumi, Li Bo, Li Xia, Xie Kabin, Fukushima Kenji, Guo Liang, Han Xiaowei, Katagiri Fumiaki, Hattori Motoyuki, Tsuda Kenichi

机构信息

National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.

Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St Paul, MN 55108.

出版信息

Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2506170122. doi: 10.1073/pnas.2506170122. Epub 2025 Jul 17.

Abstract

Salicylic acid (SA) is a major defense phytohormone. In , the isochorismate (IC) pathway is the primary route for pathogen-induced SA biosynthesis. First, the IC synthase (ICS) catalyzes the isomerization of chorismate to IC in chloroplasts. Second, the chloroplast-localized MATE transporter EDS5 appears to transport IC from chloroplasts to the cytosol. Cytosolic IC is then further converted to SA via the GH3 amino acid-conjugating enzyme PBS3. While this pathway is genetically well-characterized in , its evolutionary origin and conservation remain controversial. In this study, through comprehensive phylogenetic, structural, and functional analyses, we demonstrate that the IC pathway emerged within the Brassicales order in a time span between the divergence of and . The evolution of the IC pathway was driven by three key adaptations during the time span: 1) enhancement of ICS activity, 2) neofunctionalization of after duplication of its ancestral gene, and 3) evolution of a , whose activity is specialized for glutamate-conjugation to IC. Structural modeling and functional assays reveal that an enhanced salt bridge network in ICS enhanced its activity. One of the duplicated genes, EDS5, acquired key amino acid substitutions in the C-lobe, which contributed to the neofunctionalization. In addition, the functional clade, including , is restricted to a Brassicales clade. Taken together, this study addresses the evolutionary trajectory of IC-based SA biosynthesis.

摘要

水杨酸(SA)是一种主要的防御植物激素。在植物中,异分支酸(IC)途径是病原体诱导的SA生物合成的主要途径。首先,IC合酶(ICS)催化分支酸在叶绿体中异构化为IC。其次,定位于叶绿体的MATE转运蛋白EDS5似乎将IC从叶绿体转运到细胞质中。然后,细胞质中的IC通过GH3氨基酸结合酶PBS3进一步转化为SA。虽然该途径在植物中具有良好的遗传学特征,但其进化起源和保守性仍存在争议。在本研究中,通过全面的系统发育、结构和功能分析,我们证明IC途径在十字花目内出现的时间跨度为[两个物种名称]分化之间。在这个时间跨度内,IC途径的进化由三个关键适应驱动:1)ICS活性的增强;2)其祖先基因复制后[某基因名称]的新功能化;3)一种[某酶名称]的进化,其活性专门用于将谷氨酸与IC结合。结构建模和功能分析表明,ICS中增强的盐桥网络增强了其活性。复制基因之一EDS5在C叶中获得了关键氨基酸取代,这有助于[某基因名称]的新功能化。此外,包括[相关基因名称]在内的功能性[某基因名称]进化枝仅限于十字花目进化枝。综上所述,本研究揭示了基于IC的SA生物合成的进化轨迹。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b79b/12305054/30771f910863/pnas.2506170122fig01.jpg

相似文献

1
Emergence of isochorismate-based salicylic acid biosynthesis within Brassicales.十字花目植物中基于异分支酸的水杨酸生物合成的出现。
Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2506170122. doi: 10.1073/pnas.2506170122. Epub 2025 Jul 17.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验