Suppr超能文献

基于异常值检测和校正算法以及启发式智能优化算法的新型混合模型,用于日常空气质量指数预测。

An innovative hybrid model based on outlier detection and correction algorithm and heuristic intelligent optimization algorithm for daily air quality index forecasting.

机构信息

School of Statistics, Dongbei University of Finance and Economics, Dalian, 116025, China.

School of Statistics, Dongbei University of Finance and Economics, Dalian, 116025, China.

出版信息

J Environ Manage. 2020 Feb 1;255:109855. doi: 10.1016/j.jenvman.2019.109855. Epub 2019 Nov 21.

Abstract

Air pollution forecasting plays an important role in helping reduce air pollutant emission and guiding people's daily activities and warning the public in advance. Nevertheless, previous articles still have many shortcomings, such as ignoring the importance of outlier point detection and correction of original time series, and random initial parameters of models, and so on. A new hybrid model using outlier detection and correction algorithm and heuristic intelligent optimization algorithm is proposed in this study to address the above mentioned problems. First, data preprocessing algorithms are conducted to detect and correct outliers, excavate the main characteristics of the original time series; second, a widely used heuristic intelligent optimization algorithm is adopted to optimize the parameters of extreme learning machine to obtain the forecasting results of each subseries with improvement in accuracy; finally, experimental results and analysis show that the presented hybrid model provides accurate prediction, outperforming other comparison models, which emphasize the importance of outlier point detection and correction and optimization parameters of models, it also give a new feasible method for air pollution prediction, and contribute to make effective plans for air pollutant emissions.

摘要

空气污染预测在帮助减少空气污染物排放、指导人们的日常活动和提前警告公众方面发挥着重要作用。然而,以前的文章仍然存在许多缺点,例如忽略了异常点检测和原始时间序列校正的重要性,以及模型的随机初始参数等。本研究提出了一种使用异常点检测和校正算法以及启发式智能优化算法的新混合模型,以解决上述问题。首先,进行数据预处理算法以检测和校正异常值,挖掘原始时间序列的主要特征;其次,采用一种广泛使用的启发式智能优化算法来优化极限学习机的参数,以提高每个子序列的预测精度;最后,实验结果和分析表明,所提出的混合模型提供了准确的预测,优于其他比较模型,这强调了异常点检测和校正以及模型参数优化的重要性,也为空气污染预测提供了一种新的可行方法,有助于为空气污染物排放制定有效的计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验