Kinney Zacharias J, Kirinda Viraj C, Hartley C Scott
Department of Chemistry & Biochemistry , Miami University , Oxford , OH 45056 , USA . Email:
Chem Sci. 2019 Aug 9;10(39):9057-9068. doi: 10.1039/c9sc02975c. eCollection 2019 Oct 21.
Higher-order structure in abiotic foldamer systems represents an important but largely unrealized goal. As one approach to this challenge, covalent assembly can be used to assemble macrocycles with foldamer subunits in well-defined spatial relationships. Such systems have previously been shown to exhibit self-sorting, new folding motifs, and dynamic stereoisomerism, yet there remain important questions about the interplay between folding and macrocyclization and the effect of structural confinement on folding behavior. Here, we explore the dynamic covalent assembly of extended -phenylenes (hexamer and decamer) with rod-shaped linkers. Characteristic H chemical shift differences between cyclic and acyclic systems can be compared with computational conformer libraries to determine the folding states of the macrocycles. We show that the bite angle provides a measure of the fit of an -phenylene conformer within a shape-persistent macrocycle, affecting both assembly and ultimate folding behavior. For the -phenylene hexamer, the bite angle and conformer stability work synergistically to direct assembly toward triangular [3 + 3] macrocycles of well-folded oligomers. For the decamer, the energetic accessibility of conformers with small bite angles allows [2 + 2] macrocycles to be formed as the predominant species. In these systems, the -phenylenes are forced into unusual folding states, preferentially adopting a backbone geometry with distinct helical blocks of opposite handedness. The results show that simple geometric restrictions can be used to direct foldamers toward increasingly complex folds.
非生物折叠体系统中的高阶结构是一个重要但很大程度上尚未实现的目标。作为应对这一挑战的一种方法,共价组装可用于将折叠体亚基以明确的空间关系组装成大环。此前已证明此类系统表现出自分类、新的折叠基序和动态立体异构现象,但关于折叠与大环化之间的相互作用以及结构限制对折叠行为的影响,仍存在重要问题。在此,我们探索了带有棒状连接体的扩展亚苯基(六聚体和十聚体)的动态共价组装。环状和非环状系统之间特征性的氢化学位移差异可与计算构象库进行比较,以确定大环的折叠状态。我们表明,咬角提供了一种衡量亚苯基构象体在形状持久大环内适配性的方法,它既影响组装又影响最终的折叠行为。对于亚苯基六聚体,咬角和构象体稳定性协同作用,引导组装形成由折叠良好的低聚物构成的三角形[3 + 3]大环。对于十聚体,小咬角构象体的能量可及性使得[2 + 2]大环成为主要物种。在这些系统中,亚苯基被迫进入不寻常的折叠状态,优先采用具有相反手性的不同螺旋块的主链几何结构。结果表明,简单的几何限制可用于引导折叠体形成越来越复杂的折叠结构。