Suppr超能文献

基于集合的基因组学差异协方差检验

Set-based differential covariance testing for genomics.

作者信息

Zhou Yi-Hui

机构信息

Department of Biological Sciences and Bioinformatics Research Center North Carolina State University Raleigh 27695 North Carolina USA.

出版信息

Stat (Int Stat Inst). 2019;8(1):e235. doi: 10.1002/sta4.235. Epub 2019 Aug 6.

Abstract

The problem of detecting the changes in covariance for a single pair of genomic features has been studied in some detail but may be limited in importance or general applicability. For testing equality of covariance matrices of a set of features, many methods have been limited to the two-sample problem and involve varying assumptions on the number of features versus the sample size . More general covariance regression approaches are appealing but have been insufficiently structured to provide interpretable testing. To address these deficiencies, we propose a simple uniform framework to test association of covariance matrices with an experimental variable, whether discrete or continuous. We describe four different summary statistics, to ensure power and flexibility under various alternatives, including a new "connectivity" statistic that is sensitive to the changes in overall covariance magnitude. For continuous experimental variables, a natural individual "risk score" is associated with several of the statistics. We establish asymptotic results applicable to both continuous and discrete responses, with relatively mild conditions and allowing for situations where >. We also show that the proposed statistics are permutationally equivalent to some existing methods in the two-sample special case. We demonstrate the power and utility of our approaches via simulation and analysis of real data. The R package is published on R CRAN.

摘要

对于单对基因组特征协方差变化的检测问题已进行了较为详细的研究,但在重要性或普遍适用性方面可能存在局限性。对于检验一组特征的协方差矩阵是否相等,许多方法局限于两样本问题,并且涉及对特征数量与样本量关系的不同假设。更通用的协方差回归方法很有吸引力,但结构不够完善,无法提供可解释的检验。为解决这些不足,我们提出一个简单统一的框架来检验协方差矩阵与实验变量(无论是离散的还是连续的)之间的关联。我们描述了四种不同的汇总统计量,以确保在各种备择假设下的检验功效和灵活性,包括一种对总体协方差大小变化敏感的新“连通性”统计量。对于连续的实验变量,几个统计量都与一个自然的个体“风险评分”相关。我们建立了适用于连续和离散响应的渐近结果,条件相对宽松,并且适用于样本量大于特征数量的情况。我们还表明,在两样本特殊情况下,所提出的统计量与一些现有方法在排列上是等价的。我们通过模拟和实际数据分析展示了我们方法的功效和实用性。R包已发布在R CRAN上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/6853199/869a49d6a92f/STA4-8-na-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验