Suppr超能文献

高维协方差矩阵测试及其在检测精神分裂症风险基因中的应用

TESTING HIGH-DIMENSIONAL COVARIANCE MATRICES, WITH APPLICATION TO DETECTING SCHIZOPHRENIA RISK GENES.

作者信息

Zhu Lingxue, Lei Jing, Devlin Bernie, Roeder Kathryn

机构信息

Department of Statistics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA.

Department of Psychiatry and Human Genetics, University of Pittsburgh School of Medicine, 3811 O'Hara Street, Pittsburgh, Pennsylvania 15213, USA.

出版信息

Ann Appl Stat. 2017 Sep;11(3):1810-1831. doi: 10.1214/17-AOAS1062. Epub 2017 Oct 5.

Abstract

Scientists routinely compare gene expression levels in cases versus controls in part to determine genes associated with a disease. Similarly, detecting case-control differences in co-expression among genes can be critical to understanding complex human diseases; however statistical methods have been limited by the high dimensional nature of this problem. In this paper, we construct a sparse-Leading-Eigenvalue-Driven (sLED) test for comparing two high-dimensional covariance matrices. By focusing on the spectrum of the differential matrix, sLED provides a novel perspective that accommodates what we assume to be common, namely sparse and weak signals in gene expression data, and it is closely related with Sparse Principal Component Analysis. We prove that sLED achieves full power asymptotically under mild assumptions, and simulation studies verify that it outperforms other existing procedures under many biologically plausible scenarios. Applying sLED to the largest gene-expression dataset obtained from post-mortem brain tissue from Schizophrenia patients and controls, we provide a novel list of genes implicated in Schizophrenia and reveal intriguing patterns in gene co-expression change for Schizophrenia subjects. We also illustrate that sLED can be generalized to compare other gene-gene "relationship" matrices that are of practical interest, such as the weighted adjacency matrices.

摘要

科学家经常比较病例组与对照组的基因表达水平,部分目的是确定与疾病相关的基因。同样,检测基因间共表达的病例对照差异对于理解复杂的人类疾病可能至关重要;然而,统计方法一直受限于该问题的高维性质。在本文中,我们构建了一种稀疏主导特征值驱动(sLED)检验,用于比较两个高维协方差矩阵。通过关注差异矩阵的谱,sLED提供了一种新颖的视角,它考虑到了我们认为常见的情况,即在基因表达数据中存在稀疏且微弱的信号,并且它与稀疏主成分分析密切相关。我们证明,在温和假设下,sLED渐近地达到完全功效,模拟研究验证了在许多生物学上合理的情况下,它优于其他现有方法。将sLED应用于从精神分裂症患者和对照组的死后脑组织获得的最大基因表达数据集,我们提供了一份与精神分裂症相关的新基因列表,并揭示了精神分裂症患者基因共表达变化中有趣的模式。我们还表明,sLED可以推广到比较其他具有实际意义的基因 - 基因“关系”矩阵,如加权邻接矩阵。

相似文献

3
Inference for High-dimensional Differential Correlation Matrices.高维差分相关矩阵的推断
J Multivar Anal. 2016 Jan 1;143:107-126. doi: 10.1016/j.jmva.2015.08.019.
4
Eigenvectors from Eigenvalues Sparse Principal Component Analysis (EESPCA).来自特征值稀疏主成分分析(EESPCA)的特征向量。
J Comput Graph Stat. 2022;31(2):486-501. doi: 10.1080/10618600.2021.1987254. Epub 2021 Nov 12.
5
Optimal Estimation and Rank Detection for Sparse Spiked Covariance Matrices.稀疏尖峰协方差矩阵的最优估计与秩检测
Probab Theory Relat Fields. 2015 Apr 1;161(3-4):781-815. doi: 10.1007/s00440-014-0562-z.
6
Longitudinal regression of covariance matrix outcomes.协方差矩阵结果的纵向回归
Biostatistics. 2024 Apr 15;25(2):385-401. doi: 10.1093/biostatistics/kxac045.
8
Principal regression for high dimensional covariance matrices.高维协方差矩阵的主回归
Electron J Stat. 2021;15(2):4192-4235. doi: 10.1214/21-ejs1887. Epub 2021 Sep 14.
9
Set-based differential covariance testing for genomics.基于集合的基因组学差异协方差检验
Stat (Int Stat Inst). 2019;8(1):e235. doi: 10.1002/sta4.235. Epub 2019 Aug 6.
10
Sparse Covariance Matrix Estimation With Eigenvalue Constraints.具有特征值约束的稀疏协方差矩阵估计
J Comput Graph Stat. 2014 Apr;23(2):439-459. doi: 10.1080/10618600.2013.782818.

引用本文的文献

3
The cluster D-trace loss for differential network analysis.用于差分网络分析的聚类D-迹损失
J Appl Stat. 2023 Aug 14;51(10):1843-1860. doi: 10.1080/02664763.2023.2245178. eCollection 2024.
9
On Graphical Models and Convex Geometry.关于图形模型与凸几何
Comput Stat Data Anal. 2023 Nov;187. doi: 10.1016/j.csda.2023.107800. Epub 2023 Jun 14.

本文引用的文献

3
Schizophrenia.精神分裂症
Lancet. 2016 Jul 2;388(10039):86-97. doi: 10.1016/S0140-6736(15)01121-6. Epub 2016 Jan 15.
4
MicroRNA124 Regulated Neurite Elongation by Targeting OSBP.MicroRNA124 通过靶向 OSBP 调控神经突伸长。
Mol Neurobiol. 2016 Nov;53(9):6388-6396. doi: 10.1007/s12035-015-9540-4. Epub 2015 Nov 18.
5
Inference for High-dimensional Differential Correlation Matrices.高维差分相关矩阵的推断
J Multivar Anal. 2016 Jan 1;143:107-126. doi: 10.1016/j.jmva.2015.08.019.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验