Suppr超能文献

高效准确的大分子体系玻恩-奥本海默分子动力学。

Efficient and Accurate Born-Oppenheimer Molecular Dynamics for Large Molecular Systems.

机构信息

Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU) , Butenandtstr. 7, D-81377 München, Germany.

Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU) , Butenandtstr. 5-13, D-81377 München, Germany.

出版信息

J Chem Theory Comput. 2017 Nov 14;13(11):5479-5485. doi: 10.1021/acs.jctc.7b00937. Epub 2017 Oct 25.

Abstract

An efficient scheme for the calculation of Born-Oppenheimer molecular dynamics (BOMD) simulations is introduced. It combines the corrected small basis set Hartree-Fock (HF-3c) method by Sure and Grimme [J. Comput. Chem. 2013, 43, 1672], extended Lagrangian BOMD (XL-BOMD) by Niklasson et al. [J. Chem. Phys. 2009, 130, 214109], and the calculation of the two electron integrals on graphics processing units (GPUs) [J. Chem. Phys. 2013, 138, 134114; J. Chem. Theory Comput. 2015, 11, 918]. To explore the parallel performance of our strong scaling implementation of the method, we present timings and extract, as its validation and first illustrative application, high-quality vibrational spectra from simulated trajectories of β-carotene, paclitaxel, and liquid water (up to 500 atoms). We conclude that the presented BOMD scheme may be used as a cost-efficient and reliable tool for computing vibrational spectra and thermodynamics of large molecular systems including explicit solvent molecules containing 500 atoms and more. Simulating 50 ps of maitotoxin (nearly 500 atoms) employing time steps of 0.5 fs requires ∼3 weeks on 12 CPUs (Intel Xeon E5 2620 v3) with 24 GPUs (AMD FirePro 3D W8100).

摘要

引入了一种用于 Born-Oppenheimer 分子动力学(BOMD)模拟计算的高效方案。它结合了 Sure 和 Grimme [J. Comput. Chem. 2013, 43, 1672] 修正的小基组 Hartree-Fock(HF-3c)方法、Niklasson 等人 [J. Chem. Phys. 2009, 130, 214109] 扩展的拉格朗日 BOMD(XL-BOMD)方法,以及在图形处理单元(GPU)上计算双电子积分 [J. Chem. Phys. 2013, 138, 134114; J. Chem. Theory Comput. 2015, 11, 918]。为了探索我们的方法强比例缩放实现的并行性能,我们给出了时间,并提取了从β-胡萝卜素、紫杉醇和液态水(最多 500 个原子)模拟轨迹中获得的高质量振动光谱作为其验证和首次说明性应用。我们得出结论,所提出的 BOMD 方案可以作为一种经济高效且可靠的工具,用于计算包括显含溶剂分子的大分子体系的振动光谱和热力学,这些体系包含 500 个原子以上的溶剂分子。使用 0.5 fs 的时间步长模拟 50 ps 的海兔毒素(近 500 个原子)需要在 12 个 CPU(Intel Xeon E5 2620 v3)上使用 24 个 GPU(AMD FirePro 3D W8100)大约 3 周的时间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验