Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.
Phys Rev Lett. 2019 Nov 1;123(18):180601. doi: 10.1103/PhysRevLett.123.180601.
In contrast with Anderson localization where a genuine localization is observed in real space, the many-body localization (MBL) problem is much less understood in Hilbert space, the support of the eigenstates. In this Letter, using exact diagonalization techniques we address the ergodicity properties in the underlying N-dimensional complex networks spanned by various computational bases for up to L=24 spin-1/2 particles (i.e., Hilbert space of size N≃2.7×10^{6}). We report fully ergodic eigenstates in the delocalized phase (irrespective of the computational basis), while the MBL regime features a generically (basis-dependent) multifractal behavior, delocalized but nonergodic. The MBL transition is signaled by a nonuniversal jump of the multifractal dimensions.
与安德森局域化不同,安德森局域化在实空间中观察到真正的局域化,而多体局域化(MBL)问题在希尔伯特空间中,即本征态的支撑空间中,理解得要少得多。在这封信中,我们使用精确对角化技术来研究由各种计算基所构成的 N 维复网络中的遍历性质,这些计算基的范围高达 L=24 个自旋为 1/2 的粒子(即大小为 N≃2.7×10^{6}的希尔伯特空间)。我们报告了在离域相(与计算基无关)中完全遍历的本征态,而 MBL 区域的特征是普遍的(基于计算基的)多重分形行为,是离域的但非遍历的。MBL 转变由多重分形维度的非普适跳跃来标记。