Šuntajs Jan, Bonča Janez, Prosen Tomaž, Vidmar Lev
Department of Theoretical Physics, J. Stefan Institute, SI-1000 Ljubljana, Slovenia.
Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
Phys Rev E. 2020 Dec;102(6-1):062144. doi: 10.1103/PhysRevE.102.062144.
Characterizing states of matter through the lens of their ergodic properties is a fascinating new direction of research. In the quantum realm, the many-body localization (MBL) was proposed to be the paradigmatic ergodicity breaking phenomenon, which extends the concept of Anderson localization to interacting systems. At the same time, random matrix theory has established a powerful framework for characterizing the onset of quantum chaos and ergodicity (or the absence thereof) in quantum many-body systems. Here we numerically study the spectral statistics of disordered interacting spin chains, which represent prototype models expected to exhibit MBL. We study the ergodicity indicator g=log_{10}(t_{H}/t_{Th}), which is defined through the ratio of two characteristic many-body time scales, the Thouless time t_{Th} and the Heisenberg time t_{H}, and hence resembles the logarithm of the dimensionless conductance introduced in the context of Anderson localization. We argue that the ergodicity breaking transition in interacting spin chains occurs when both time scales are of the same order, t_{Th}≈t_{H}, and g becomes a system-size independent constant. Hence, the ergodicity breaking transition in many-body systems carries certain analogies with the Anderson localization transition. Intriguingly, using a Berezinskii-Kosterlitz-Thouless correlation length we observe a scaling solution of g across the transition, which allows for detection of the crossing point in finite systems. We discuss the observation that scaled results in finite systems by increasing the system size exhibit a flow towards the quantum chaotic regime.
通过遍历性质来刻画物质状态是一个引人入胜的新研究方向。在量子领域,多体局域化(MBL)被认为是典型的遍历性破缺现象,它将安德森局域化的概念扩展到了相互作用系统。同时,随机矩阵理论为刻画量子多体系统中量子混沌和遍历性(或其缺失)的起始建立了一个强大的框架。在此,我们对无序相互作用自旋链的谱统计进行了数值研究,无序相互作用自旋链代表了预期会出现MBL的原型模型。我们研究遍历性指标g = log₁₀(tₕ/tₜₕ),它是通过两个特征多体时间尺度,即 Thouless 时间tₜₕ和海森堡时间tₕ的比值来定义的,因此类似于在安德森局域化背景下引入的无量纲电导的对数。我们认为,当两个时间尺度具有相同量级,即tₜₕ≈tₕ,且g成为与系统大小无关的常数时,相互作用自旋链中的遍历性破缺转变就会发生。因此,多体系统中的遍历性破缺转变与安德森局域化转变存在一定的相似性。有趣的是,利用 Berezinskii-Kosterlitz-Thouless 关联长度,我们观察到了跨越转变的g的标度解,这使得在有限系统中能够检测到交叉点。我们讨论了这样一个观察结果:通过增加系统大小,有限系统中的标度结果会呈现出向量子混沌区域的流动。