Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.
Chair of Scientific Computing for Systems Biology, Faculty of Computer Science, TU Dresden, 01187 Dresden, Germany.
Phys Rev Lett. 2019 Nov 1;123(18):188101. doi: 10.1103/PhysRevLett.123.188101.
The cell cortex, a thin film of active material assembled below the cell membrane, plays a key role in cellular symmetry-breaking processes such as cell polarity establishment and cell division. Here, we present a minimal model of the self-organization of the cell cortex that is based on a hydrodynamic theory of curved active surfaces. Active stresses on this surface are regulated by a diffusing molecular species. We show that coupling of the active surface to a passive bulk fluid enables spontaneous polarization and the formation of a contractile ring on the surface via mechanochemical instabilities. We discuss the role of external fields in guiding such pattern formation. Our work reveals that key features of cellular symmetry breaking and cell division can emerge in a minimal model via general dynamic instabilities.
细胞皮层是细胞膜下组装的一层活性物质薄膜,在细胞极性建立和细胞分裂等细胞对称性破缺过程中起着关键作用。在这里,我们提出了一个基于弯曲活性表面的流体力学理论的细胞皮层自组织的最小模型。这种表面上的主动应力是由扩散的分子物种来调节的。我们表明,通过机械化学不稳定性,将活性表面与被动的体相流体耦合能够在表面上自发极化并形成收缩环。我们讨论了外部场在引导这种模式形成中的作用。我们的工作表明,通过一般的动力学不稳定性,细胞对称性破缺和细胞分裂的关键特征可以在一个最小模型中出现。