Department of Life Science Frontiers, Center for iPS Cell Research and Application , Kyoto University , 53 Kawahara-cho , Shogoin, Sakyo-ku, Kyoto 606-8507 , Japan.
Graduate School of Medicine , Kyoto University , Kyoto 606-8507 , Japan.
ACS Synth Biol. 2020 Jan 17;9(1):169-174. doi: 10.1021/acssynbio.9b00343. Epub 2019 Dec 13.
The lack of available genetic modules is a fundamental issue in mammalian synthetic biology. Especially, the variety of genetic parts for translational control are limited. Here we report a new set of synthetic mRNA-based translational switches by engineering RNA-binding proteins (RBPs) and RBP-binding RNA motifs (aptamers) that perform strong translational repression. We redesigned the RNA motifs with RNA scaffolds and improved the efficiency of the repression to target RBPs. Using new and previously reported mRNA switches, we demonstrated that the orthogonality of translational regulation was ensured among five different RBP-responsive switches. Moreover, the new switches functioned not only with plasmid introduction, but also with RNA-only delivery, which provides a transient and safer regulation of expression. The translational regulators using RNA-protein interactions provide an alternative strategy to construct complex genetic circuits for future cell engineering and therapeutics.
缺乏可用的遗传模块是哺乳动物合成生物学中的一个基本问题。特别是,用于翻译控制的遗传部件种类有限。在这里,我们通过工程 RNA 结合蛋白 (RBP) 和 RBP 结合 RNA 基序 (适体) 报告了一组新的基于合成 mRNA 的翻译开关,这些开关可实现强翻译抑制。我们使用 RNA 支架重新设计了 RNA 基序,并提高了抑制效率以靶向 RBP。使用新的和以前报道的 mRNA 开关,我们证明了在五个不同的 RBP 响应开关之间,翻译调节的正交性得到了保证。此外,新的开关不仅可以与质粒导入一起使用,还可以与仅 RNA 递送一起使用,这为表达的瞬时和更安全的调节提供了可能。使用 RNA-蛋白质相互作用的翻译调节剂为构建用于未来细胞工程和治疗的复杂遗传电路提供了一种替代策略。