Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109.
Department of Chemistry, University of California, Irvine, CA 92697.
Proc Natl Acad Sci U S A. 2019 Dec 10;116(50):25097-25105. doi: 10.1073/pnas.1909298116. Epub 2019 Nov 25.
The virus bacteriophage T4, from the family , employs an intriguing contractile injection machine to inject its genome into the bacterium Although the atomic structure of phage T4 is largely understood, the dynamics of its injection machinery remains unknown. This study contributes a system-level model describing the nonlinear dynamics of the phage T4 injection machinery interacting with a host cell. The model employs a continuum representation of the contractile sheath using elastic constants inferred from atomistic molecular-dynamics (MD) simulations. Importantly, the sheath model is coupled to component models representing the remaining structures of the virus and the host cell. The resulting system-level model captures virus-cell interactions as well as competing energetic mechanisms that release and dissipate energy during the injection process. Simulations reveal the dynamical pathway of the injection process as a "contraction wave" that propagates along the sheath, the energy that powers the injection machinery, the forces responsible for piercing the host cell membrane, and the energy dissipation that controls the timescale of the injection process. These results from the model compare favorably with the available (but limited) experimental measurements.
病毒噬菌体 T4 属于 科,它利用一种引人入胜的收缩注射机制将其基因组注入细菌中。尽管噬菌体 T4 的原子结构在很大程度上已被理解,但它的注射机制的动力学仍然未知。本研究提供了一个系统级模型,描述了与宿主细胞相互作用的噬菌体 T4 注射机制的非线性动力学。该模型使用从原子分子动力学 (MD) 模拟推断出的弹性常数对收缩鞘进行连续体表示。重要的是,鞘模型与代表病毒和宿主细胞其余结构的组件模型耦合。由此产生的系统级模型可以捕获病毒-细胞相互作用以及在注射过程中释放和耗散能量的竞争能量机制。模拟揭示了注射过程的动力学途径是沿着鞘传播的“收缩波”,该注射机制的能量、负责刺穿宿主细胞膜的力以及控制注射过程时间尺度的能量耗散。该模型的结果与可用的(但有限的)实验测量结果非常吻合。