Suppr超能文献

基于 3.0T MRI 的纹理分析对乳腺癌新辅助化疗反应的相关性研究。

Texture Analysis with 3.0-T MRI for Association of Response to Neoadjuvant Chemotherapy in Breast Cancer.

机构信息

From the Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, 06273 Seoul, Republic of Korea (N.L.E., E.J.S., J.H.Y., J.A.K., H.M.G.); Department of Radiology, Hanyang University, College of Medicine, Seoul, Republic of Korea (N.L.E., J.S.P.); and Department of Healthcare Information Technology, Inje University, Gimhae, Republic of Korea (D.K.).

出版信息

Radiology. 2020 Jan;294(1):31-41. doi: 10.1148/radiol.2019182718. Epub 2019 Nov 26.

Abstract

Background Previous studies have suggested that texture analysis is a promising tool in the diagnosis, characterization, and assessment of treatment response in various cancer types. Therefore, application of texture analysis may be helpful for early prediction of pathologic response in breast cancer. Purpose To investigate whether texture analysis of features from MRI is associated with pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer. Materials and Methods This retrospective study included 136 women (mean age, 47.9 years; range, 31-70 years) who underwent NAC and subsequent surgery for breast cancer between January 2012 and August 2017. Patients were monitored with 3.0-T MRI before (pretreatment) and after (midtreatment) three or four cycles of NAC. Texture analysis was performed at pre- and midtreatment T2-weighted MRI, contrast material-enhanced T1-weighted MRI, diffusion-weighted MRI, and apparent diffusion coefficient (ADC) mapping by using commercial software. A random forest method was applied to build a predictive model for classifying those with pCR with use of texture parameters. Diagnostic performance for predicting pCR was assessed and compared with that of six other machine learning classifiers (adaptive boosting, decision tree, k-nearest neighbor, linear support vector machine, naive Bayes, and linear discriminant analysis) by using the Wald test and DeLong method. Results Forty of the 136 patients (29%) achieved pCR after NAC. In the prediction of pCR, the random forest classifier showed the lowest diagnostic performance with pretreatment ADC (area under the receiver operating characteristic curve [AUC], 0.53; 95% confidence interval: 0.44, 0.61) and the highest diagnostic performance with midtreatment contrast-enhanced T1-weighted MRI (AUC, 0.82; 95% confidence interval: 0.74, 0.88) among pre- and midtreatment T2-weighted MRI, contrast-enhanced T1-weighted MRI, diffusion-weighted MRI, and ADC mapping. Conclusion Texture parameters using a random forest method of contrast-enhanced T1-weighted MRI at midtreatment of neoadjuvant chemotherapy were valuable and associated with pathologic complete response in breast cancer. © RSNA, 2019

摘要

背景 先前的研究表明,纹理分析是一种很有前途的工具,可用于各种癌症类型的诊断、特征描述和治疗反应评估。因此,纹理分析的应用可能有助于早期预测乳腺癌的病理缓解。目的 旨在探讨 MRI 特征的纹理分析是否与乳腺癌新辅助化疗(NAC)的病理完全缓解(pCR)相关。材料与方法 本回顾性研究纳入了 2012 年 1 月至 2017 年 8 月期间接受 NAC 治疗后行手术的 136 例女性患者(平均年龄,47.9 岁;范围,31~70 岁)。患者在 NAC 前(预处理)和 3 或 4 个周期后(中处理)接受 3.0-T MRI 监测。在预处理和中处理 T2 加权 MRI、对比增强 T1 加权 MRI、弥散加权 MRI 和表观弥散系数(ADC)图上使用商业软件进行纹理分析。应用随机森林方法构建基于纹理参数的预测模型,以分类具有 pCR 的患者。采用 Wald 检验和 DeLong 方法评估并比较预测 pCR 的诊断性能与 6 种其他机器学习分类器(自适应增强、决策树、k-最近邻、线性支持向量机、朴素贝叶斯和线性判别分析)的性能。结果 136 例患者中,40 例(29%)在 NAC 后获得 pCR。在预测 pCR 方面,随机森林分类器在预处理 ADC(曲线下面积[AUC],0.53;95%置信区间:0.44,0.61)中显示出最低的诊断性能,在中处理对比增强 T1 加权 MRI(AUC,0.82;95%置信区间:0.74,0.88)中显示出最高的诊断性能,而在预处理和中处理 T2 加权 MRI、对比增强 T1 加权 MRI、弥散加权 MRI 和 ADC 图中则表现不佳。结论 使用随机森林法对新辅助化疗中处理时的对比增强 T1 加权 MRI 的纹理参数具有重要价值,与乳腺癌的病理完全缓解相关。 ©RSNA,2019

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验