Cored Jorge, García-Ortiz Andrea, Iborra Sara, Climent María J, Liu Lichen, Chuang Cheng-Hao, Chan Ting-Shan, Escudero Carlos, Concepción Patricia, Corma Avelino
Instituto de Tecnología Química , Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC) , Avenida de los Naranjos s/n , 46022 Valencia , Spain.
Department of Physics , Tamkang University , Tamsui 25137 New Taipei City , Taiwan.
J Am Chem Soc. 2019 Dec 11;141(49):19304-19311. doi: 10.1021/jacs.9b07088. Epub 2019 Nov 27.
Ruthenium nanoparticles with a core-shell structure formed by a core of metallic ruthenium and a shell of ruthenium carbide have been synthesized by a mild and easy hydrothermal treatment. The dual structure and composition of the nanoparticles have been determined by synchrotron X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS) analysis, and transmission electron microscopy (TEM) imaging. According to depth profile synchrotron XPS and X-ray diffraction (XRD) analysis, metallic ruthenium species predominate in the inner layers of the material, ruthenium carbide species being located on the upper surface layers. The ruthenium carbon catalysts presented herein are able to activate both CO and H, exhibiting exceptional high activity for CO hydrogenation at low temperatures (160-200 °C) with 100% selectivity to methane, surpassing by far the most active Ru catalysts reported up to now. On the basis of catalytic studies and isotopic CO/CO/H experiments, the active sites responsible for this unprecedented activity can be associated with surface ruthenium carbide (RuC) species, which enable CO activation and transformation to methane via a direct CO hydrogenation mechanism. Both the high activity and the absence of CO in the gas effluent confer relevance to these catalysts for the Sabatier reaction, a chemical process with renewed interest for storing surplus renewable energy in the form of methane.
通过温和且简便的水热法合成了具有核壳结构的钌纳米颗粒,其核为金属钌,壳为碳化钌。通过同步辐射X射线光电子能谱(XPS)、近边X射线吸收精细结构(NEXAFS)分析和透射电子显微镜(TEM)成像确定了纳米颗粒的双重结构和组成。根据深度剖析同步辐射XPS和X射线衍射(XRD)分析,金属钌物种在材料内层占主导,碳化钌物种位于上表面层。本文介绍的钌碳催化剂能够同时活化CO和H,在低温(160 - 200°C)下对CO加氢表现出极高的活性,对甲烷的选择性为100%,远远超过了迄今为止报道的活性最高的Ru催化剂。基于催化研究和同位素CO/CO/H实验,这种前所未有的活性所涉及的活性位点可能与表面碳化钌(RuC)物种有关,这些物种能够通过直接CO加氢机制使CO活化并转化为甲烷。高活性以及尾气中不存在CO这两个特点使得这些催化剂与萨巴蒂尔反应相关,萨巴蒂尔反应是一种以甲烷形式储存过剩可再生能源的化学过程,目前人们对其重新产生了兴趣。