Department of Mathematical Sciences, University of Massachusetts, Lowell, MA, USA.
Department of Pediatrics, Yale University, New Haven, CT, USA.
BMC Med Res Methodol. 2019 Nov 27;19(1):216. doi: 10.1186/s12874-019-0848-z.
Antiretroviral therapy (ART) has significantly reduced HIV-related morbidity and mortality. However, therapeutic benefit of ART is often limited by delayed drug-associated toxicity. Nucleoside reverse transcriptase inhibitors (NRTIs) are the backbone of ART regimens. NRTIs compete with endogenous deoxyribonucleotide triphosphates (dNTPs) in incorporation into elongating DNA chain resulting in their cytotoxic or antiviral effect. Thus, the efficacy of NRTIs could be affected by direct competition with endogenous dNTPs and/or feedback inhibition of their metabolic enzymes. In this paper, we assessed whether the levels of ribonucleotides (RN) and dNTP pool sizes can be used as biomarkers in distinguishing between HIV-infected patients with ART-induced mitochondrial toxicity and HIV-infected patients without toxicity.
We used data collected through a case-control study from 50 subjects. Cases were defined as HIV-infected individuals with clinical and/or laboratory evidence of mitochondrial toxicity. Each case was age, gender, and race matched with an HIV-positive without evidence of toxicity. We used a range of machine learning procedures to distinguish between patients with and without toxicity. Using resampling methods like Monte Carlo k-fold cross validation, we compared the accuracy of several machine learning algorithms applied to our data. We used the algorithm with highest classification accuracy rate in evaluating the diagnostic performance of 12 RN and 14 dNTP pool sizes as biomarkers of mitochondrial toxicity.
We used eight classification algorithms to assess the diagnostic performance of RN and dNTP pool sizes distinguishing HIV patients with and without NRTI-associated mitochondrial toxicity. The algorithms resulted in cross-validated classification rates of 0.65-0.76 for dNTP and 0.72-0.83 for RN, following reduction of the dimensionality of the input data. The reduction of input variables improved the classification performance of the algorithms, with the most pronounced improvement for RN. Complex tree-based methods worked the best for both the deoxyribose dataset (Random Forest) and the ribose dataset (Classification Tree and AdaBoost), but it is worth noting that simple methods such as Linear Discriminant Analysis and Logistic Regression were very competitive in terms of classification performance.
Our finding of changes in RN and dNTP pools in participants with mitochondrial toxicity validates the importance of dNTP pools in mitochondrial function. Hence, levels of RN and dNTP pools can be used as biomarkers of ART-induced mitochondrial toxicity.
抗逆转录病毒疗法(ART)显著降低了与 HIV 相关的发病率和死亡率。然而,ART 的治疗益处往往受到延迟的药物相关毒性的限制。核苷逆转录酶抑制剂(NRTIs)是 ART 方案的基础。NRTIs 与内源性脱氧核糖核苷酸三磷酸(dNTPs)竞争,掺入延伸的 DNA 链中,从而产生细胞毒性或抗病毒作用。因此,NRTIs 的疗效可能受到与内源性 dNTP 直接竞争和/或其代谢酶的反馈抑制的影响。在本文中,我们评估了核糖核苷酸(RN)和 dNTP 池大小的水平是否可以用作区分 ART 诱导的线粒体毒性的 HIV 感染患者和无毒性的 HIV 感染患者的生物标志物。
我们使用通过病例对照研究从 50 名受试者中收集的数据。病例定义为具有临床和/或实验室证据表明存在线粒体毒性的 HIV 感染个体。每个病例都按年龄、性别和种族与无毒性证据的 HIV 阳性个体相匹配。我们使用一系列机器学习程序来区分有和无毒性的患者。使用蒙特卡罗 k 折交叉验证等重采样方法,我们比较了应用于我们数据的几种机器学习算法的准确性。我们使用分类准确率最高的算法来评估 12 种 RN 和 14 种 dNTP 池大小作为线粒体毒性生物标志物的诊断性能。
我们使用八种分类算法来评估 RN 和 dNTP 池大小区分具有和不具有 NRTI 相关线粒体毒性的 HIV 患者的诊断性能。算法得出的交叉验证分类率为 0.65-0.76 用于 dNTP,0.72-0.83 用于 RN,这是在输入数据的维数减少之后得出的。输入变量的减少提高了算法的分类性能,对于 RN 的改善最为明显。基于树的复杂方法对脱氧核糖数据集(随机森林)和核糖数据集(分类树和 AdaBoost)的效果最好,但值得注意的是,线性判别分析和逻辑回归等简单方法在分类性能方面也非常有竞争力。
我们发现线粒体毒性参与者的 RN 和 dNTP 池发生变化,验证了 dNTP 池在线粒体功能中的重要性。因此,RN 和 dNTP 池的水平可以用作 ART 诱导的线粒体毒性的生物标志物。