Suppr超能文献

高维系统中宏观可观测量的线性响应。

Linear response for macroscopic observables in high-dimensional systems.

机构信息

School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales 2006, Australia.

出版信息

Chaos. 2019 Nov;29(11):113127. doi: 10.1063/1.5122740.

Abstract

The long-term average response of observables of chaotic systems to dynamical perturbations can often be predicted using linear response theory, but not all chaotic systems possess a linear response. Macroscopic observables of complex dissipative chaotic systems, however, are widely assumed to have a linear response even if the microscopic variables do not, but the mechanism for this is not well-understood. We present a comprehensive picture for the linear response of macroscopic observables in high-dimensional coupled deterministic dynamical systems, where the coupling is via a mean field and the microscopic subsystems may or may not obey linear response theory. We derive stochastic reductions of the dynamics of these observables from statistics of the microscopic system and provide conditions for linear response theory to hold in finite dimensional systems and in the thermodynamic limit. In particular, we show that for large systems of finite size, the linear response is induced via self-generated noise. We present examples in the thermodynamic limit where the macroscopic observable satisfies linear response theory (LRT), although the microscopic subsystems individually violate LRT, as well as a converse example where the macroscopic observable does not satisfy LRT despite all microscopic subsystems satisfying LRT when uncoupled. This latter, maybe surprising, example is associated with emergent nontrivial dynamics of the macroscopic observable. We provide numerical evidence for our results on linear response as well as some analytical intuition.

摘要

混沌系统的可观测量对动力学摄动的长期平均响应通常可以使用线性响应理论来预测,但并非所有混沌系统都具有线性响应。然而,复杂耗散混沌系统的宏观可观测量被广泛认为具有线性响应,即使微观变量不具有线性响应,但其机制尚不清楚。我们提出了一种高维耦合确定性动力系统中宏观可观测量线性响应的综合描述,其中耦合是通过平均场进行的,微观子系统可能遵守也可能不遵守线性响应理论。我们从微观系统的统计数据中推导出这些可观测量的随机约化,并提供了在线性响应理论在有限维系统和热力学极限中成立的条件。特别地,我们表明,对于有限大小的大系统,线性响应是通过自生成噪声诱导的。我们给出了在热力学极限下宏观可观测量满足线性响应理论(LRT)的例子,尽管微观子系统各自违反 LRT,以及一个反例,尽管所有微观子系统在未耦合时都满足 LRT,但宏观可观测量不满足 LRT。后一个例子可能令人惊讶,它与宏观可观测量的涌现非平凡动力学有关。我们提供了关于线性响应的数值证据以及一些分析直觉。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验