Suppr超能文献

皮质微观神经水平上的随机活动(“噪声”)由宏观皮质活动的低维动力学(“混沌”)维持并受其调节。

Random activity at the microscopic neural level in cortex ("noise") sustains and is regulated by low-dimensional dynamics of macroscopic cortical activity ("chaos").

作者信息

Freeman W J

机构信息

Department of Molecular & Cell Biology, University of California, Berkeley 94720-3200, USA.

出版信息

Int J Neural Syst. 1996 Sep;7(4):473-80. doi: 10.1142/s0129065796000452.

Abstract

In this review I posit two levels of neural function. Microscopic activity is generated by neurons, to the extent that they act autonomously or in concert with networks of finite numbers of other neurons. Macroscopic activity is found in neuropil, where it depends on the sustained interaction of innumerable neurons. These levels coexist in cerebral cortex. Microscopic activity is manifested in the fraction of the variance of single neuron pulse trains (> 99.9%) that is both random and uncorrelated with pulse trains of other neurons in the neuropil. Macroscopic activity is revealed in the < 0.1% of the total variance of each neuron that is covariant with all other neurons in an area of neuropil comprising a population. It is best observed in dendritic potentials recorded as surface EEGs. The "spontaneous" background activity of neuropil at both levels arises from mutual excitation within a population of excitatory neurons. It is governed by a point attractor of the neuropil, which is actualized by the microscopic activity engendering the macroscopic state, and which acts as an order parameter to regulate the contributing neurons. The point attractor manifests a homogeneous field of white noise, into which sensory receptors send their microscopic stimuli. When neuropil comprises both excitatory and inhibitory neurons, the interactions at the macroscopic level lead to oscillations, manifesting a limit cycle attractor. When multiple areas of neuropil comprising a sensory system interact, then owing to their incommensurate characteristic frequencies and the long axonal delays between them, the system maintains a global chaotic attractor having multiple wings, one for each discriminable class of stimuli. Access to each wing is by stimulus-induced state transitions, leading to the construction of macroscopic chaotic patterns, that are carried to targets of cortical transmission by the microscopic noise. The chaotic modulation of the carrier noise is extracted by the targets through spatiotemporal integration, thereby retrieving the small covariance comprising the chaotic signal. Thus, controlled noise is the substrate for the meanings of stimuli that are expressed in chaotic patterns of sensory cortical activity.

摘要

在本综述中,我提出了神经功能的两个层次。微观活动由神经元产生,其程度取决于它们自主行动或与数量有限的其他神经元网络协同行动。宏观活动存在于神经毡中,它依赖于无数神经元的持续相互作用。这两个层次在大脑皮层中共存。微观活动表现为单个神经元脉冲序列方差的一部分(>99.9%),这部分是随机的且与神经毡中其他神经元的脉冲序列不相关。宏观活动则体现在每个神经元总方差的<0.1%中,这部分与包含一群神经元的神经毡区域中的所有其他神经元协变。在记录为表面脑电图的树突电位中最能观察到它。两个层次的神经毡“自发”背景活动都源于兴奋性神经元群体内部的相互兴奋。它由神经毡的一个点吸引子控制,该吸引子由产生宏观状态的微观活动实现,并作为一个序参量来调节有贡献的神经元。点吸引子表现为一个均匀的白噪声场,感觉感受器向其中发送微观刺激。当神经毡包含兴奋性和抑制性神经元时,宏观层面的相互作用会导致振荡,表现为一个极限环吸引子。当包含一个感觉系统的多个神经毡区域相互作用时,由于它们的特征频率不相称以及它们之间的长轴突延迟,该系统维持一个具有多个分支的全局混沌吸引子,每个可区分的刺激类别对应一个分支。通过刺激诱导的状态转换可以进入每个分支,从而构建宏观混沌模式,这些模式由微观噪声携带到皮层传输的目标。目标通过时空整合提取载波噪声的混沌调制,从而恢复包含混沌信号的小协方差。因此,受控噪声是在感觉皮层活动的混沌模式中表达的刺激意义的基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验