Barnett L, Seth A K
Sussex Centre for Consciousness Science, Department of Informatics, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom.
Canadian Institute for Advanced Research, Program on Brain, Mind, and Consciousness, Toronto, Ontario M5G 1M1, Canada.
Phys Rev E. 2023 Jul;108(1-1):014304. doi: 10.1103/PhysRevE.108.014304.
We introduce a notion of emergence for macroscopic variables associated with highly multivariate microscopic dynamical processes. Dynamical independence instantiates the intuition of an emergent macroscopic process as one possessing the characteristics of a dynamical system "in its own right," with its own dynamical laws distinct from those of the underlying microscopic dynamics. We quantify (departure from) dynamical independence by a transformation-invariant Shannon information-based measure of dynamical dependence. We emphasize the data-driven discovery of dynamically independent macroscopic variables, and introduce the idea of a multiscale "emergence portrait" for complex systems. We show how dynamical dependence may be computed explicitly for linear systems in both time and frequency domains, facilitating discovery of emergent phenomena across spatiotemporal scales, and outline application of the linear operationalization to inference of emergence portraits for neural systems from neurophysiological time-series data. We discuss dynamical independence for discrete- and continuous-time deterministic dynamics, with potential application to Hamiltonian mechanics and classical complex systems such as flocking and cellular automata.
我们引入了与高度多变量微观动力学过程相关的宏观变量的涌现概念。动力学独立性将涌现宏观过程的直觉实例化为一个具有“自身”动力学系统特征的过程,其自身的动力学定律不同于底层微观动力学的定律。我们通过基于变换不变的香农信息的动力学依赖性度量来量化(与)动力学独立性的偏离。我们强调数据驱动的动态独立宏观变量的发现,并引入了复杂系统的多尺度“涌现画像”的概念。我们展示了如何在时域和频域中显式计算线性系统的动力学依赖性,促进跨时空尺度的涌现现象的发现,并概述了线性操作化在从神经生理时间序列数据推断神经系统涌现画像中的应用。我们讨论了离散时间和连续时间确定性动力学的动力学独立性,其潜在应用于哈密顿力学和诸如群聚和细胞自动机等经典复杂系统。