Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany.
Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, München, Germany.
Appl Microbiol Biotechnol. 2020 Jan;104(1):131-144. doi: 10.1007/s00253-019-10242-1. Epub 2019 Nov 28.
The availability of bioresources is a precondition for life science research, medical applications, and diagnostics, but requires a dedicated quality management to guarantee reliable and safe storage. Anecdotal reports of bacterial isolates and sample contamination indicate that organisms may persist in liquid nitrogen (LN) storage tanks. To evaluate the safety status of cryocollections, we systematically screened organisms in the LN phase and in ice layers covering inner surfaces of storage tanks maintained in different biobanking facilities. We applied a culture-independent approach combining cell detection by epifluorescence microscopy with the amplification of group-specific marker genes and high-throughput sequencing of bacterial ribosomal genes. In the LN phase, neither cells nor bacterial 16S rRNA gene copy numbers were detectable (detection limit, 10 cells per ml, 10 gene copies per ml). In several cases, small numbers of bacteria of up to 10 cells per ml and up to 10 gene copies per ml, as well as Mycoplasma, or fungi were detected in the ice phase formed underneath the lids or accumulated at the bottom. The bacteria most likely originated from the stored materials themselves (Elizabethingia, Janthibacterium), the technical environment (Pseudomonas, Acinetobacter, Methylobacterium), or the human microbiome (Bacteroides, Streptococcus, Staphylococcus). In single cases, bacteria, Mycoplasma, fungi, and human cells were detected in the debris at the bottom of the storage tanks. In conclusion, the limited microbial load of the ice phase and in the debris of storage tanks can be effectively avoided by minimizing ice formation and by employing hermetically sealed sample containers.
生物资源的可用性是生命科学研究、医学应用和诊断的前提条件,但需要专门的质量管理来保证可靠和安全的储存。有关细菌分离物和样本污染的传闻报告表明,生物体可能在液氮(LN)储存罐中持续存在。为了评估低温生物样本库的安全状况,我们系统地筛选了在 LN 相中和储存罐内表面冰层中存在的生物体,这些储存罐分别保存在不同的生物库设施中。我们采用了一种无培养方法,结合了通过荧光显微镜检测细胞与扩增特异性标记基因以及高通量测序细菌核糖体基因相结合。在 LN 相中,既无法检测到细胞,也无法检测到细菌 16S rRNA 基因拷贝数(检测限为每毫升 10 个细胞,每毫升 10 个基因拷贝)。在几种情况下,在盖子下方形成的冰相或在底部积累的冰相中,都可以检测到数量很少的细菌,数量可达每毫升 10 个细胞和每毫升 10 个基因拷贝,以及支原体或真菌。这些细菌很可能源自储存材料本身(Elizabethingia、Janthibacterium)、技术环境(假单胞菌、不动杆菌、甲基杆菌)或人体微生物组(拟杆菌、链球菌、葡萄球菌)。在个别情况下,在储存罐底部的残渣中可以检测到细菌、支原体、真菌和人体细胞。总之,通过最小化冰的形成和使用密封的样本容器,可以有效地避免冰相和储存罐残渣中的微生物负荷。