Suppr超能文献

Deblur能快速解析单核苷酸群落序列模式。

Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns.

作者信息

Amir Amnon, McDonald Daniel, Navas-Molina Jose A, Kopylova Evguenia, Morton James T, Zech Xu Zhenjiang, Kightley Eric P, Thompson Luke R, Hyde Embriette R, Gonzalez Antonio, Knight Rob

机构信息

Department of Pediatrics, University of California San Diego, La Jolla, California, USA.

Department of Pediatrics, University of California San Diego, La Jolla, California, USA; Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA.

出版信息

mSystems. 2017 Mar 7;2(2). doi: 10.1128/mSystems.00191-16. eCollection 2017 Mar-Apr.

Abstract

High-throughput sequencing of 16S ribosomal RNA gene amplicons has facilitated understanding of complex microbial communities, but the inherent noise in PCR and DNA sequencing limits differentiation of closely related bacteria. Although many scientific questions can be addressed with broad taxonomic profiles, clinical, food safety, and some ecological applications require higher specificity. Here we introduce a novel sub-operational-taxonomic-unit (sOTU) approach, Deblur, that uses error profiles to obtain putative error-free sequences from Illumina MiSeq and HiSeq sequencing platforms. Deblur substantially reduces computational demands relative to similar sOTU methods and does so with similar or better sensitivity and specificity. Using simulations, mock mixtures, and real data sets, we detected closely related bacterial sequences with single nucleotide differences while removing false positives and maintaining stability in detection, suggesting that Deblur is limited only by read length and diversity within the amplicon sequences. Because Deblur operates on a per-sample level, it scales to modern data sets and meta-analyses. To highlight Deblur's ability to integrate data sets, we include an interactive exploration of its application to multiple distinct sequencing rounds of the American Gut Project. Deblur is open source under the Berkeley Software Distribution (BSD) license, easily installable, and downloadable from https://github.com/biocore/deblur. Deblur provides a rapid and sensitive means to assess ecological patterns driven by differentiation of closely related taxa. This algorithm provides a solution to the problem of identifying real ecological differences between taxa whose amplicons differ by a single base pair, is applicable in an automated fashion to large-scale sequencing data sets, and can integrate sequencing runs collected over time.

摘要

16S核糖体RNA基因扩增子的高通量测序有助于人们了解复杂的微生物群落,但聚合酶链式反应(PCR)和DNA测序中固有的噪声限制了对密切相关细菌的区分。尽管许多科学问题可以通过宽泛的分类学概况来解决,但临床、食品安全及一些生态学应用需要更高的特异性。在此,我们介绍一种新颖的亚操作分类单元(sOTU)方法——Deblur,它利用错误概况从Illumina MiSeq和HiSeq测序平台获得假定的无错误序列。相对于类似的sOTU方法,Deblur大大降低了计算需求,并且在灵敏度和特异性方面与之相当或更优。通过模拟、模拟混合物和真实数据集,我们检测到了单核苷酸差异的密切相关细菌序列,同时去除了假阳性并保持检测的稳定性,这表明Deblur仅受扩增子序列内读长和多样性的限制。由于Deblur是在每个样本的层面上运行,它能够扩展到现代数据集和荟萃分析。为了突出Deblur整合数据集的能力,我们纳入了对其应用于美国肠道计划多个不同测序轮次的交互式探索。Deblur在伯克利软件发行版(BSD)许可下开源,易于安装,可从https://github.com/biocore/deblur下载。Deblur提供了一种快速且灵敏的方法来评估由密切相关分类群的分化所驱动的生态模式。该算法为识别扩增子相差单个碱基对的分类群之间真正的生态差异这一问题提供了解决方案,能够以自动化方式应用于大规模测序数据集,并且可以整合随时间收集的测序运行结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96bd/5340863/2e6feb7c0eb4/sys0021720910001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验