Suppr超能文献

贝叶斯合成方法在比较两种方法的研究中的比较:教程。

A comparison of Bayesian synthesis approaches for studies comparing two means: A tutorial.

机构信息

Psychology, University of California, Los Angeles, California.

Psychology Department, University of Georgia, Athens, Georgia.

出版信息

Res Synth Methods. 2020 Jan;11(1):36-65. doi: 10.1002/jrsm.1365. Epub 2019 Nov 29.

Abstract

Researchers often seek to synthesize results of multiple studies on the same topic to draw statistical or substantive conclusions and to estimate effect sizes that will inform power analyses for future research. The most popular synthesis approach is meta-analysis. There have been few discussions and applications of other synthesis approaches. This tutorial illustrates and compares multiple Bayesian synthesis approaches (i.e., integrative data analyses, meta-analyses, data fusion using augmented data-dependent priors, and data fusion using aggregated data-dependent priors) and discusses when and how to use these Bayesian synthesis approaches to combine studies that compare two independent group means or two matched group means. For each approach, fixed-, random-, and mixed-effects models with other variants are illustrated with real data. R code is provided to facilitate the implementation of each method and each model. On the basis of these analyses, we summarize the strengths and limitations of each approach and provide recommendations to guide future synthesis efforts.

摘要

研究人员经常试图综合同一主题的多项研究结果,以得出统计或实质性结论,并估计将为未来研究提供信息的效应大小。最流行的综合方法是荟萃分析。其他综合方法的讨论和应用较少。本教程说明了和比较了多种贝叶斯综合方法(即综合数据分析、荟萃分析、使用增强数据相关先验的数据融合以及使用聚合数据相关先验的数据融合),并讨论了何时以及如何使用这些贝叶斯综合方法来结合比较两个独立组均值或两个匹配组均值的研究。对于每种方法,都使用真实数据说明了固定效应、随机效应和混合效应模型及其变体。提供了 R 代码来方便每种方法和每种模型的实现。在此基础上,我们总结了每种方法的优缺点,并提供建议以指导未来的综合工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验