Suppr超能文献

JASP 贝叶斯模型平均元分析教程。

A tutorial on Bayesian model-averaged meta-analysis in JASP.

机构信息

University of Amsterdam, Amsterdam, Netherlands.

Philipps University of Marburg, Marburg, Germany.

出版信息

Behav Res Methods. 2024 Mar;56(3):1260-1282. doi: 10.3758/s13428-023-02093-6. Epub 2023 Apr 26.

Abstract

Researchers conduct meta-analyses in order to synthesize information across different studies. Compared to standard meta-analytic methods, Bayesian model-averaged meta-analysis offers several practical advantages including the ability to quantify evidence in favor of the absence of an effect, the ability to monitor evidence as individual studies accumulate indefinitely, and the ability to draw inferences based on multiple models simultaneously. This tutorial introduces the concepts and logic underlying Bayesian model-averaged meta-analysis and illustrates its application using the open-source software JASP. As a running example, we perform a Bayesian meta-analysis on language development in children. We show how to conduct a Bayesian model-averaged meta-analysis and how to interpret the results.

摘要

研究人员进行荟萃分析是为了综合不同研究中的信息。与标准的荟萃分析方法相比,贝叶斯模型平均荟萃分析具有几个实际优势,包括能够量化缺乏效应的证据的能力,能够随着单个研究无限期地积累而监测证据的能力,以及能够基于多个模型同时进行推断的能力。本教程介绍了贝叶斯模型平均荟萃分析的概念和逻辑,并使用开源软件 JASP 说明了其应用。作为一个运行示例,我们对儿童语言发展进行了贝叶斯荟萃分析。我们展示了如何进行贝叶斯模型平均荟萃分析以及如何解释结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5760/10991068/3fab640719cc/13428_2023_2093_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验