Suppr超能文献

空间分位数回归及其在马拉维高低出生体重儿中的应用。

Spatial quantile regression with application to high and low child birth weight in Malawi.

机构信息

Department of Basic Sciences, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi.

出版信息

BMC Public Health. 2019 Nov 29;19(1):1593. doi: 10.1186/s12889-019-7949-9.

Abstract

BACKGROUND

Child low and high birth weight are important public health problems. Many studies have looked at factors of low and high birth weight using mean regression. This study aimed at using quantile regression to find out determinants of low and high birth weight.

METHODS

Spatial quantile regression models at 0.05 and 0.95 percentiles of birth weight were fitted to 13,087 children birth weight in kilograms using Malawi demographic health survey data of 2010 study. Full Bayesian method by integrated nested Laplace approximations (INLA) was used to estimate the model. Second order random walk priors were assigned for mother age and antenatal visits for pregnancy while Gaussian markov random field prior was used for district of the child.

RESULTS

Residual spatial patterns reveal areas in the southern region promoting high birth weight while areas in the central and northern region promote low birth weight. Most fixed effects findings are consistent with the literature. Richest family, normal mother body mass index (BMI), mother over weight (BMI > 25 kg/m), birth order 2-3, mother secondary education and height (≥150 cm) negate low birth weight while weight 45-70 kg promote low birth weight. Birth order category 6+, mother height (≥150 cm) and poor wealth quintile, promote high birth weight, while richer and richest wealth quintiles and education categories: primary, secondary, and higher, and mother overweight (BMI > 25 kg/m) reduce high birth weight. Antenatal visits for pregnancy reduce both low and high birth weight.

CONCLUSION

Strategies to reduce low and high birth weight should simultaneously address mother education, weight gain during pregnancy and poverty while targeting areas increasing low and high birth weight.

摘要

背景

儿童低体重和高体重是重要的公共卫生问题。许多研究都使用均值回归来研究低体重和高体重的因素。本研究旨在使用分位数回归来发现低体重和高体重的决定因素。

方法

使用 2010 年马拉维人口健康调查数据,对 13087 名儿童的体重(以千克为单位)进行了 0.05 和 0.95 百分位的空间分位数回归模型拟合。采用全贝叶斯方法,通过集成嵌套拉普拉斯逼近(INLA)进行模型估计。为母亲年龄和孕期产前检查分配二阶随机游走先验,为孩子所在的地区分配高斯马尔可夫随机场先验。

结果

残差空间模式揭示了南部地区促进高体重的区域,而中部和北部地区则促进低体重的区域。大多数固定效应的发现与文献一致。最富裕的家庭、正常的母亲体重指数(BMI)、母亲超重(BMI>25kg/m)、第 2-3 胎、母亲中等教育程度和身高(≥150cm)可降低低体重的风险,而体重在 45-70kg 之间则会增加低体重的风险。第 6 胎及以上胎次、母亲身高(≥150cm)和贫困程度较高的五分位数会促进高体重,而较富裕和最富裕的五分位数以及教育程度为小学、中学和高等教育,以及母亲超重(BMI>25kg/m)则会降低高体重的风险。孕期产前检查次数既能降低低体重的风险,也能降低高体重的风险。

结论

降低低体重和高体重的策略应同时解决母亲教育、孕期体重增加和贫困问题,同时针对增加低体重和高体重的地区采取措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598e/6884851/42b2ce88c63b/12889_2019_7949_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验