Suppr超能文献

一种用于听觉恐惧条件反射的定制微控无线操作舱。

A Custom Microcontrolled and Wireless-Operated Chamber for Auditory Fear Conditioning.

作者信息

Amaral-Júnior Paulo Aparecido, Mourão Flávio Afonso Gonçalves, Amancio Mariana Chamon Ladeira, Pinto Hyorrana Priscila Pereira, Carvalho Vinícius Rezende, Guarnieri Leonardo de Oliveira, Magalhães Hermes Aguiar, Moraes Márcio Flávio Dutra

机构信息

Programa de Pós Graduação em Engenharia Elétrica, Departamento de Engenharia Eletrônica (DELT), Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Programa de Pós Graduação em Neurociências, Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

出版信息

Front Neurosci. 2019 Nov 7;13:1193. doi: 10.3389/fnins.2019.01193. eCollection 2019.

Abstract

Animal behavioral paradigms, such as classical conditioning and operant conditioning, are an important tool to study the neural basis of cognition and behavior. These paradigms involve manipulating sensory stimuli in a way that learning processes are induced under controlled experimental conditions. However, the majority of the commercially available equipment did not offer flexibility to manipulate stimuli. Therefore, the development of most versatile devices would allow the study of more complex cognitive functions. The purpose of this work is to present a low-cost, customized and wireless-operated chamber for animal behavior conditioning, based on the joint operation of two microcontroller modules: Arduino Due and ESP8266-12E. Our results showed that the auditory stimulation system allows setting the carrier frequency in the range of 1 Hz up to more than 100 kHz and the sound stimulus can be modulated in amplitude, also over a wide range of frequencies. Likewise, foot-shock could be precisely manipulated regarding its amplitude (from ∼200 μA to ∼1500 μA) and frequency (up to 20 pulses per second). Finally, adult rats exposed to a protocol of cued fear conditioning in our device showed consistent behavioral response and electrophysiological evoked responses in the midbrain auditory pathway. Furthermore, the device developed in the current study represents an open source alternative to develop customized protocols to study fear memory under conditions of varied sensory stimuli.

摘要

动物行为范式,如经典条件反射和操作性条件反射,是研究认知和行为神经基础的重要工具。这些范式涉及以在受控实验条件下诱导学习过程的方式操纵感觉刺激。然而,大多数市售设备在操纵刺激方面缺乏灵活性。因此,开发功能最丰富的设备将有助于研究更复杂的认知功能。这项工作的目的是基于两个微控制器模块(Arduino Due和ESP8266-12E)的联合操作,展示一种用于动物行为条件反射的低成本、定制且无线操作的实验箱。我们的结果表明,听觉刺激系统能够将载波频率设置在1赫兹至超过100千赫兹的范围内,并且声音刺激的幅度也能在很宽的频率范围内进行调制。同样,足部电击在幅度(从约200微安到约1500微安)和频率(每秒高达20个脉冲)方面都能得到精确操纵。最后,在我们的设备中接受线索恐惧条件反射实验的成年大鼠在中脑听觉通路中表现出一致的行为反应和电生理诱发反应。此外,本研究中开发的设备代表了一种开源选择,可用于开发定制方案,以便在各种感觉刺激条件下研究恐惧记忆。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eba9/6853868/90a2f368203e/fnins-13-01193-g001.jpg

相似文献

1
A Custom Microcontrolled and Wireless-Operated Chamber for Auditory Fear Conditioning.
Front Neurosci. 2019 Nov 7;13:1193. doi: 10.3389/fnins.2019.01193. eCollection 2019.
2
Auditory fear conditioning modifies steady-state evoked potentials in the rat inferior colliculus.
J Neurophysiol. 2017 Aug 1;118(2):1012-1020. doi: 10.1152/jn.00293.2017. Epub 2017 Apr 26.
3
ROBucket: A low cost operant chamber based on the Arduino microcontroller.
Behav Res Methods. 2016 Jun;48(2):503-9. doi: 10.3758/s13428-015-0603-2.
4
3D-printed operant chambers for rats: Design, assembly, and innovations.
Behav Processes. 2022 Jun;199:104647. doi: 10.1016/j.beproc.2022.104647. Epub 2022 Apr 27.
5
Effects of the swimming exercise on the consolidation and persistence of auditory and contextual fear memory.
Neurosci Lett. 2016 Aug 15;628:147-52. doi: 10.1016/j.neulet.2016.06.020. Epub 2016 Jun 18.
8
OBAT: An open-source and low-cost operant box for auditory discriminative tasks.
Behav Res Methods. 2018 Apr;50(2):816-825. doi: 10.3758/s13428-017-0906-6.
9
Fear Incubation Using an Extended Fear-Conditioning Protocol for Rats.
J Vis Exp. 2020 Aug 22(162). doi: 10.3791/60537.

引用本文的文献

1
Construction of multi-robot platform based on dobot robots.
Front Neurorobot. 2025 Feb 5;19:1550787. doi: 10.3389/fnbot.2025.1550787. eCollection 2025.
2
Extracting electromyographic signals from multi-channel LFPs using independent component analysis without direct muscular recording.
Cell Rep Methods. 2023 May 17;3(6):100482. doi: 10.1016/j.crmeth.2023.100482. eCollection 2023 Jun 26.
3
A Fully Adapted Headstage With Custom Electrode Arrays Designed for Electrophysiological Experiments.
Front Neurosci. 2022 Mar 3;15:691788. doi: 10.3389/fnins.2021.691788. eCollection 2021.
4
Assaying Fear Memory Discrimination and Generalization: Methods and Concepts.
Curr Protoc Neurosci. 2020 Mar;91(1):e89. doi: 10.1002/cpns.89.

本文引用的文献

1
The Future Is Open: Open-Source Tools for Behavioral Neuroscience Research.
eNeuro. 2019 Aug 9;6(4). doi: 10.1523/ENEURO.0223-19.2019. Print 2019 Jul/Aug.
3
Open source modules for tracking animal behavior and closed-loop stimulation based on Open Ephys and Bonsai.
J Neural Eng. 2018 Oct;15(5):055002. doi: 10.1088/1741-2552/aacf45. Epub 2018 Jun 27.
4
Auditory fear conditioning modifies steady-state evoked potentials in the rat inferior colliculus.
J Neurophysiol. 2017 Aug 1;118(2):1012-1020. doi: 10.1152/jn.00293.2017. Epub 2017 Apr 26.
5
Auditory processing assessment suggests that Wistar audiogenic rat neural networks are prone to entrainment.
Neuroscience. 2017 Apr 7;347:48-56. doi: 10.1016/j.neuroscience.2017.01.043. Epub 2017 Feb 8.
6
Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology.
J Neural Eng. 2017 Aug;14(4):045003. doi: 10.1088/1741-2552/aa5eea.
7
Electric foot shock stress: a useful tool in neuropsychiatric studies.
Rev Neurosci. 2015;26(6):655-77. doi: 10.1515/revneuro-2015-0015.
8
Triggering Different Brain States Using Asynchronous Serial Communication to the Rat Amygdala.
Cereb Cortex. 2016 May;26(5):1866-1877. doi: 10.1093/cercor/bhu313. Epub 2015 Jan 21.
9
Fluctuations in oscillation frequency control spike timing and coordinate neural networks.
J Neurosci. 2014 Jul 2;34(27):8988-98. doi: 10.1523/JNEUROSCI.0261-14.2014.
10
Amygdala microcircuits controlling learned fear.
Neuron. 2014 Jun 4;82(5):966-80. doi: 10.1016/j.neuron.2014.04.042.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验