Suppr超能文献

听觉恐惧条件反射改变大鼠下丘的稳态诱发电位。

Auditory fear conditioning modifies steady-state evoked potentials in the rat inferior colliculus.

作者信息

Lockmann André Luiz Vieira, Mourão Flávio Afonso Gonçalves, Moraes Marcio Flávio Dutra

机构信息

Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

出版信息

J Neurophysiol. 2017 Aug 1;118(2):1012-1020. doi: 10.1152/jn.00293.2017. Epub 2017 Apr 26.

Abstract

The rat inferior colliculus (IC) is a major midbrain relay for ascending inputs from the auditory brain stem and has been suggested to play a key role in the processing of aversive sounds. Previous studies have demonstrated that auditory fear conditioning (AFC) potentiates transient responses to brief tones in the IC, but it remains unexplored whether AFC modifies responses to sustained periodic acoustic stimulation-a type of response called the steady-state evoked potential (SSEP). Here we used an amplitude-modulated tone-a 10-kHz tone with a sinusoidal amplitude modulation of 53.7 Hz-as the conditioning stimulus (CS) in an AFC protocol (5 CSs per day in 3 consecutive days) while recording local field potentials (LFPs) from the IC. In the preconditioning session (), the CS elicited prominent 53.7-Hz SSEPs. In the training session (), foot shocks occurred at the end of each CS (paired group) or randomized in the inter-CS interval (unpaired group). In the test session (), SSEPs markedly differed from preconditioning in the paired group: in the first two trials the phase to which the SSEP coupled to the CS amplitude envelope shifted ~90°; in the last two trials the SSEP power and the coherence of SSEP with the CS amplitude envelope increased. LFP power decreased in frequency bands other than 53.7 Hz. In the unpaired group, SSEPs did not change in the test compared with preconditioning. Our results show that AFC causes dissociated changes in the phase and power of SSEP in the IC. Local field potential oscillations in the inferior colliculus follow the amplitude envelope of an amplitude-modulated tone, originating a neural response called the steady-state evoked potential. We show that auditory fear conditioning of an amplitude-modulated tone modifies two parameters of the steady-state evoked potentials in the inferior colliculus: first the phase to which the evoked oscillation couples to the amplitude-modulated tone shifts; subsequently, the evoked oscillation power increases along with its coherence with the amplitude-modulated tone.

摘要

大鼠下丘(IC)是来自听觉脑干的上行输入的主要中脑中继站,并且已被认为在厌恶声音的处理中起关键作用。先前的研究表明,听觉恐惧条件反射(AFC)增强了下丘对短暂音调的瞬态反应,但AFC是否会改变对持续周期性声刺激(一种称为稳态诱发电位(SSEP)的反应类型)的反应仍未得到探索。在这里,我们使用调幅音(一个10kHz的音调,正弦调幅为53.7Hz)作为AFC方案(连续3天每天5次条件刺激)中的条件刺激(CS),同时记录下丘的局部场电位(LFP)。在预处理阶段(),条件刺激引发了明显的53.7Hz稳态诱发电位。在训练阶段(),足部电击在每个条件刺激结束时发生(配对组)或在条件刺激间隔期随机发生(非配对组)。在测试阶段(),配对组的稳态诱发电位与预处理阶段明显不同:在前两次试验中,稳态诱发电位与条件刺激幅度包络耦合的相位偏移了约90°;在最后两次试验中,稳态诱发电位的功率以及稳态诱发电位与条件刺激幅度包络的相干性增加。在53.7Hz以外的频段局部场电位功率下降。在非配对组中,测试时的稳态诱发电位与预处理相比没有变化。我们的结果表明,听觉恐惧条件反射导致下丘稳态诱发电位的相位和功率发生分离变化。下丘的局部场电位振荡跟随调幅音的幅度包络,产生一种称为稳态诱发电位的神经反应。我们表明,调幅音的听觉恐惧条件反射改变了下丘稳态诱发电位的两个参数:首先,诱发振荡与调幅音耦合的相位发生偏移;随后,诱发振荡功率随着其与调幅音的相干性增加而增加。

相似文献

1
Auditory fear conditioning modifies steady-state evoked potentials in the rat inferior colliculus.
J Neurophysiol. 2017 Aug 1;118(2):1012-1020. doi: 10.1152/jn.00293.2017. Epub 2017 Apr 26.
2
Amygdala inhibition impairs fear conditioning but increases the stimulus-driven activity in the inferior colliculus.
Neurosci Lett. 2020 Nov 1;738:135311. doi: 10.1016/j.neulet.2020.135311. Epub 2020 Aug 17.
5
Changes in the auditory-evoked potentials induced by fear-evoking stimulations.
Physiol Behav. 2001 Feb;72(3):365-72. doi: 10.1016/s0031-9384(00)00418-2.
6
Avoiding spectral leakage in objective detection of auditory steady-state evoked responses in the inferior colliculus of rat using coherence.
J Neurosci Methods. 2005 Jun 15;144(2):249-55. doi: 10.1016/j.jneumeth.2004.11.014. Epub 2005 Jan 7.
7
Changes on auditory physiology in response to the inactivation of amygdala nuclei in high anxiety rats expressing learned fear.
Physiol Behav. 2013 Jun 13;118:80-7. doi: 10.1016/j.physbeh.2013.05.007. Epub 2013 May 14.
8
Evidence of neuronal plasticity within the inferior colliculus after noise exposure: a study of evoked potentials in the rat.
Electroencephalogr Clin Neurophysiol. 1996 Mar;100(2):158-64. doi: 10.1016/0013-4694(95)00234-0.
10
Steady-state auditory evoked potentials (SSAEPs) in the rabbit. Contribution of the inferior colliculus.
Electroencephalogr Clin Neurophysiol. 1993 May-Jun;88(3):229-36. doi: 10.1016/0168-5597(93)90008-d.

引用本文的文献

1
Mixed Representations of Sound and Action in the Auditory Midbrain.
J Neurosci. 2024 Jul 24;44(30):e1831232024. doi: 10.1523/JNEUROSCI.1831-23.2024.
2
Mixed representations of sound and action in the auditory midbrain.
bioRxiv. 2023 Sep 19:2023.09.19.558449. doi: 10.1101/2023.09.19.558449.
3
A Fully Adapted Headstage With Custom Electrode Arrays Designed for Electrophysiological Experiments.
Front Neurosci. 2022 Mar 3;15:691788. doi: 10.3389/fnins.2021.691788. eCollection 2021.
4
A Custom Microcontrolled and Wireless-Operated Chamber for Auditory Fear Conditioning.
Front Neurosci. 2019 Nov 7;13:1193. doi: 10.3389/fnins.2019.01193. eCollection 2019.
5
Seizure Susceptibility Corrupts Inferior Colliculus Acoustic Integration.
Front Syst Neurosci. 2019 Nov 6;13:63. doi: 10.3389/fnsys.2019.00063. eCollection 2019.

本文引用的文献

1
Auditory processing assessment suggests that Wistar audiogenic rat neural networks are prone to entrainment.
Neuroscience. 2017 Apr 7;347:48-56. doi: 10.1016/j.neuroscience.2017.01.043. Epub 2017 Feb 8.
2
Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer.
PLoS Biol. 2015 Sep 22;13(9):e1002257. doi: 10.1371/journal.pbio.1002257. eCollection 2015.
3
Unexpected abrupt onsets can override a top-down set for color.
J Exp Psychol Hum Percept Perform. 2015 Aug;41(4):1153-65. doi: 10.1037/xhp0000084. Epub 2015 Jun 1.
4
Distinct features of auditory steady-state responses as compared to transient event-related potentials.
PLoS One. 2013 Jul 9;8(7):e69164. doi: 10.1371/journal.pone.0069164. Print 2013.
5
Changes on auditory physiology in response to the inactivation of amygdala nuclei in high anxiety rats expressing learned fear.
Physiol Behav. 2013 Jun 13;118:80-7. doi: 10.1016/j.physbeh.2013.05.007. Epub 2013 May 14.
6
Gamma band plasticity in sensory cortex is a signature of the strongest memory rather than memory of the training stimulus.
Neurobiol Learn Mem. 2013 Sep;104:49-63. doi: 10.1016/j.nlm.2013.05.001. Epub 2013 May 10.
7
Cortical modulation of auditory processing in the midbrain.
Front Neural Circuits. 2013 Jan 3;6:114. doi: 10.3389/fncir.2012.00114. eCollection 2012.
8
Neural plasticity expressed in central auditory structures with and without tinnitus.
Front Syst Neurosci. 2012 May 28;6:40. doi: 10.3389/fnsys.2012.00040. eCollection 2012.
9
The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes.
Nat Rev Neurosci. 2012 May 18;13(6):407-20. doi: 10.1038/nrn3241.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验