Suppr超能文献

用内隐测量法预测行为:令人失望的发现、合理的解释及精妙的解决方案

Predicting Behavior With Implicit Measures: Disillusioning Findings, Reasonable Explanations, and Sophisticated Solutions.

作者信息

Meissner Franziska, Grigutsch Laura Anne, Koranyi Nicolas, Müller Florian, Rothermund Klaus

机构信息

General Psychology II, Institute of Psychology, Friedrich Schiller University Jena, Jena, Germany.

Department for the Psychology of Human Movement and Sport, Institute for Sports Science, Friedrich Schiller University Jena, Jena, Germany.

出版信息

Front Psychol. 2019 Nov 8;10:2483. doi: 10.3389/fpsyg.2019.02483. eCollection 2019.

Abstract

Two decades ago, the introduction of the Implicit Association Test (IAT) sparked enthusiastic reactions. With implicit measures like the IAT, researchers hoped to finally be able to bridge the gap between self-reported attitudes on one hand and behavior on the other. Twenty years of research and several meta-analyses later, however, we have to conclude that neither the IAT nor its derivatives have fulfilled these expectations. Their predictive value for behavioral criteria is weak and their incremental validity over and above self-report measures is negligible. In our review, we present an overview of explanations for these unsatisfactory findings and delineate promising ways forward. Over the years, several reasons for the IAT's weak predictive validity have been proposed. They point to four potentially problematic features: First, the IAT is by no means a pure measure of individual differences in associations but suffers from extraneous influences like recoding. Hence, the predictive validity of IAT-scores should not be confused with the predictive validity of associations. Second, with the IAT, we usually aim to measure evaluation ("liking") instead of motivation ("wanting"). Yet, behavior might be determined much more often by the latter than the former. Third, the IAT focuses on measuring associations instead of propositional beliefs and thus taps into a construct that might be too unspecific to account for behavior. Finally, studies on predictive validity are often characterized by a mismatch between predictor and criterion (e.g., while behavior is highly context-specific, the IAT usually takes into account neither the situation nor the domain). Recent research, however, also revealed advances addressing each of these problems, namely (1) procedural and analytical advances to control for recoding in the IAT, (2) measurement procedures to assess implicit wanting, (3) measurement procedures to assess implicit beliefs, and (4) approaches to increase the fit between implicit measures and behavioral criteria (e.g., by incorporating contextual information). Implicit measures like the IAT hold an enormous potential. In order to allow them to fulfill this potential, however, we have to refine our understanding of these measures, and we should incorporate recent conceptual and methodological advancements. This review provides specific recommendations on how to do so.

摘要

二十年前,内隐联想测验(IAT)的引入引发了热烈反响。借助像IAT这样的内隐测量方法,研究人员希望最终能够弥合一方面的自我报告态度与另一方面的行为之间的差距。然而,经过二十年的研究以及多项元分析之后,我们不得不得出结论,无论是IAT还是其衍生方法都未能实现这些期望。它们对行为标准的预测价值微弱,相对于自我报告测量方法而言,其增量效度可忽略不计。在我们的综述中,我们概述了对这些不尽人意的研究结果的解释,并勾勒出了有前景的前进方向。多年来,人们提出了IAT预测效度薄弱的几个原因。这些原因指向四个潜在的问题特征:第一,IAT绝不是关联中个体差异的纯粹测量方法,而是受到像重新编码这样的外部影响。因此,IAT分数的预测效度不应与关联的预测效度相混淆。第二,使用IAT时,我们通常旨在测量评价(“喜欢”)而非动机(“想要”)。然而,行为可能更多地由后者而非前者决定。第三,IAT专注于测量关联而非命题信念,因此触及到一个可能过于不具体而无法解释行为的结构。最后,关于预测效度的研究往往以预测指标与标准之间的不匹配为特征(例如,虽然行为具有高度情境特异性,但IAT通常既不考虑情境也不考虑领域)。然而,最近的研究也揭示了解决这些问题的进展,即(1)控制IAT中重新编码的程序和分析进展,(2)评估内隐想要的测量程序,(3)评估内隐信念的测量程序,以及(4)提高内隐测量与行为标准之间契合度的方法(例如,通过纳入情境信息)。像IAT这样的内隐测量方法具有巨大潜力。然而,为了使其发挥这一潜力,我们必须完善对这些测量方法的理解,并且应该纳入最近的概念和方法进展。本综述提供了关于如何做到这一点的具体建议。

相似文献

1
Predicting Behavior With Implicit Measures: Disillusioning Findings, Reasonable Explanations, and Sophisticated Solutions.
Front Psychol. 2019 Nov 8;10:2483. doi: 10.3389/fpsyg.2019.02483. eCollection 2019.
3
Dissociating implicit wanting from implicit liking: Development and validation of the Wanting Implicit Association Test (W-IAT).
J Behav Ther Exp Psychiatry. 2017 Mar;54:165-169. doi: 10.1016/j.jbtep.2016.08.008. Epub 2016 Aug 17.
4
Predicting alcohol use with a recoding-free variant of the Implicit Association Test.
Addict Behav. 2009 May;34(5):487-9. doi: 10.1016/j.addbeh.2008.12.012. Epub 2009 Jan 7.
5
Implicit measures of "wanting" and "liking" in humans.
Neurosci Biobehav Rev. 2015 Oct;57:350-64. doi: 10.1016/j.neubiorev.2015.09.015. Epub 2015 Sep 30.
6
Health of the Implicit Association Test at age 3.
Z Exp Psychol. 2001;48(2):85-93. doi: 10.1026//0949-3946.48.2.85.
7
8
Implicit attitudes towards homosexuality: reliability, validity, and controllability of the IAT.
Z Exp Psychol. 2001;48(2):145-60. doi: 10.1026//0949-3946.48.2.145.
9
Implicit attitudes towards risky driving behaviors: Evidence of validity for the implicit association test.
J Safety Res. 2020 Dec;75:284-291. doi: 10.1016/j.jsr.2020.08.008. Epub 2020 Sep 20.
10
The Implicit Association Test: A Method in Search of a Construct.
Perspect Psychol Sci. 2021 Mar;16(2):396-414. doi: 10.1177/1745691619863798. Epub 2019 Oct 24.

引用本文的文献

1
Are Auditory-Perceptual Evaluations of Dysphonia by Experienced Voice Clinicians Affected by Knowledge of Speaker Race?
Am J Speech Lang Pathol. 2025 May 6;34(3):1341-1351. doi: 10.1044/2025_AJSLP-24-00355. Epub 2025 Apr 14.
3
Psychometric evaluation of Liking and Wanting implicit association tests for physical activity and recreational screen use.
J Behav Med. 2025 Apr;48(2):349-359. doi: 10.1007/s10865-024-00544-9. Epub 2025 Jan 20.
5
In the I of the beholder: an attempt to capture the implicit self-concept regarding psychopathy.
Front Psychol. 2024 Jun 17;15:1346029. doi: 10.3389/fpsyg.2024.1346029. eCollection 2024.
6
Design and pilot test of an implicit bias mitigation curriculum for clinicians.
Front Med (Lausanne). 2024 Jun 6;11:1316475. doi: 10.3389/fmed.2024.1316475. eCollection 2024.
7
Automatic price appraisals: why they matter and how to measure them.
Front Psychol. 2024 Apr 26;15:1359007. doi: 10.3389/fpsyg.2024.1359007. eCollection 2024.
9
An implicit measure of growth mindset uniquely predicts post-failure learning behavior.
Sci Rep. 2024 Feb 14;14(1):3761. doi: 10.1038/s41598-024-52916-5.
10

本文引用的文献

1
The Propositional Evaluation Paradigm: Indirect Assessment of Personal Beliefs and Attitudes.
Front Psychol. 2019 Nov 7;10:2385. doi: 10.3389/fpsyg.2019.02385. eCollection 2019.
3
Relationship between the Implicit Association Test and intergroup behavior: A meta-analysis.
Am Psychol. 2019 Jul-Aug;74(5):569-586. doi: 10.1037/amp0000364. Epub 2018 Dec 13.
4
Current perspectives on incentive salience and applications to clinical disorders.
Curr Opin Behav Sci. 2018 Aug;22:59-69. doi: 10.1016/j.cobeha.2018.01.007. Epub 2018 Jan 30.
6
Relational information moderates approach-avoidance instruction effects on implicit evaluation.
Acta Psychol (Amst). 2018 Mar;184:137-143. doi: 10.1016/j.actpsy.2017.03.016. Epub 2017 Apr 25.
7
Beyond associations: Do implicit beliefs play a role in smoking addiction?
J Psychopharmacol. 2017 Jan;31(1):43-53. doi: 10.1177/0269881116665327. Epub 2016 Sep 26.
8
Dissociating implicit wanting from implicit liking: Development and validation of the Wanting Implicit Association Test (W-IAT).
J Behav Ther Exp Psychiatry. 2017 Mar;54:165-169. doi: 10.1016/j.jbtep.2016.08.008. Epub 2016 Aug 17.
9
Extending multinomial processing tree models to measure the relative speed of cognitive processes.
Psychon Bull Rev. 2016 Oct;23(5):1440-1465. doi: 10.3758/s13423-016-1025-6.
10
A closer look at the discrimination outcomes in the IAT literature.
Scand J Psychol. 2016 Aug;57(4):278-87. doi: 10.1111/sjop.12288. Epub 2016 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验