Southworth Jade, Grace C Alastair, Marron Alan O, Fatima Nazeefa, Carr Martin
1Department of Biological & Geographical Sciences, University of Huddersfield, Huddersfield, HD1 3DH UK.
2Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA UK.
Mob DNA. 2019 Nov 23;10:44. doi: 10.1186/s13100-019-0189-9. eCollection 2019.
Unicellular species make up the majority of eukaryotic diversity, however most studies on transposable elements (TEs) have centred on multicellular host species. Such studies may have therefore provided a limited picture of how transposable elements evolve across eukaryotes. The choanoflagellates, as the sister group to Metazoa, are an important study group for investigating unicellular to multicellular transitions. A previous survey of the choanoflagellate revealed the presence of only three families of LTR retrotransposons, all of which appeared to be active. is the second choanoflagellate to have its whole genome sequenced and provides further insight into the evolution and population biology of transposable elements in the closest relative of metazoans.
Screening the genome revealed the presence of a minimum of 20 TE families. Seven of the annotated families are DNA transposons and the remaining 13 families are LTR retrotransposons. Evidence for two putative non-LTR retrotransposons was also uncovered, but full-length sequences could not be determined. Superfamily phylogenetic trees indicate that vertical inheritance and, in the case of one family, horizontal transfer have been involved in the evolution of the choanoflagellates TEs. Phylogenetic analyses of individual families highlight recent element activity in the genome, however six families did not show evidence of current transposition. The majority of families possess young insertions and the expression levels of TE genes vary by four orders of magnitude across families. In contrast to previous studies on TEs, the families present in show the signature of selection on codon usage, with families favouring codons that are adapted to the host translational machinery. Selection is stronger in LTR retrotransposons than DNA transposons, with highly expressed families showing stronger codon usage bias. Mutation pressure towards guanosine and cytosine also appears to contribute to TE codon usage.
increases the known diversity of choanoflagellate TEs and the complement further highlights the role of horizontal gene transfer from prey species in choanoflagellate genome evolution. Unlike previously studied TEs, the families show evidence for selection on their codon usage, which is shown to act via translational efficiency and translational accuracy.
单细胞物种构成了真核生物多样性的大部分,然而,大多数关于转座元件(TEs)的研究都集中在多细胞宿主物种上。因此,这类研究可能仅提供了转座元件如何在整个真核生物中进化的有限情况。领鞭毛虫作为后生动物的姐妹群,是研究单细胞到多细胞转变的重要研究类群。之前对领鞭毛虫的一项调查显示,仅存在三个长末端重复序列(LTR)逆转座子家族,所有这些家族似乎都具有活性。[物种名称]是第二个完成全基因组测序的领鞭毛虫,它为后生动物最亲近的亲属中转座元件的进化和群体生物学提供了进一步的见解。
对该基因组的筛选揭示至少存在20个TE家族。其中7个注释家族是DNA转座子,其余13个家族是LTR逆转座子。还发现了两个假定的非LTR逆转座子的证据,但无法确定其全长序列。超家族系统发育树表明,垂直遗传以及(在一个家族的情况下)水平转移参与了领鞭毛虫TEs的进化。对各个家族的系统发育分析突出了基因组中近期元件的活性,然而有六个家族未显示当前转座的证据。大多数家族具有年轻的插入序列,并且TE基因的表达水平在各个家族之间相差四个数量级。与之前关于TEs的研究不同,[物种名称]中存在的家族显示出密码子使用受到选择的特征,这些家族倾向于使用适应宿主翻译机制的密码子。LTR逆转座子中的选择比DNA转座子更强,高表达家族表现出更强的密码子使用偏好。对鸟嘌呤和胞嘧啶的突变压力似乎也影响TE的密码子使用。
[物种名称]增加了已知的领鞭毛虫TEs的多样性,并且这些补充进一步突出了猎物物种的水平基因转移在领鞭毛虫基因组进化中的作用。与之前研究的TEs不同,[物种名称]的家族显示出密码子使用受到选择的证据,这表明其通过翻译效率和翻译准确性起作用。