Nierzwicki Łukasz, Arantes Pablo Ricardo, Saha Aakash, Palermo Giulia
Department of Bioengineering, University of California Riverside, Riverside, California.
Department of Bioengineering and Department of Chemistry, University of California Riverside, Riverside, California.
Wiley Interdiscip Rev Comput Mol Sci. 2021 May-Jun;11(3). doi: 10.1002/wcms.1503. Epub 2020 Oct 26.
Allostery is a fundamental property of proteins, which regulates biochemical information transfer between spatially distant sites. Here, we report on the critical role of molecular dynamics (MD) simulations in discovering the mechanism of allosteric communication within CRISPR-Cas9, a leading genome editing machinery with enormous promises for medicine and biotechnology. MD revealed how allostery intervenes during at least three steps of the CRISPR-Cas9 function: affecting DNA recognition, mediating the cleavage and interfering with the off-target activity. An allosteric communication that activates concerted DNA cleavages was found to led through the L1/L2 loops, which connect the HNH and RuvC catalytic domains. The identification of these "allosteric transducers" inspired the development of novel variants of the Cas9 protein with improved specificity, opening a new avenue for controlling the CRISPR-Cas9 activity. Discussed studies also highlight the critical role of the recognition lobe in the conformational activation of the catalytic HNH domain. Specifically, the REC3 region was found to modulate the dynamics of HNH by sensing the formation of the RNA:DNA hybrid. The role of REC3 was revealed to be particularly relevant in the presence of DNA mismatches. Indeed, interference of REC3 with the RNA:DNA hybrid containing mismatched pairs at specific positions resulted in locking HNH in an inactive "conformational checkpoint" conformation, thereby hampering off-target cleavages. Overall, MD simulations established the fundamental mechanisms underlying the allosterism of CRISPR-Cas9, aiding engineering strategies to develop new CRISPR-Cas9 variants for improved genome editing.
别构效应是蛋白质的一种基本特性,它调节空间上相距较远的位点之间的生化信息传递。在此,我们报告分子动力学(MD)模拟在揭示CRISPR-Cas9内别构通讯机制中的关键作用,CRISPR-Cas9是一种领先的基因组编辑工具,在医学和生物技术领域有着巨大的应用前景。分子动力学揭示了别构效应如何在CRISPR-Cas9功能的至少三个步骤中发挥作用:影响DNA识别、介导切割以及干扰脱靶活性。发现一种激活协同DNA切割的别构通讯是通过连接HNH和RuvC催化结构域的L1/L2环实现的。这些“别构转导器”的鉴定激发了具有更高特异性的Cas9蛋白新变体的开发,为控制CRISPR-Cas9活性开辟了一条新途径。所讨论的研究还突出了识别叶在催化HNH结构域构象激活中的关键作用。具体而言,发现REC3区域通过感知RNA:DNA杂交体的形成来调节HNH的动力学。REC3的作用在存在DNA错配的情况下尤为重要。事实上,REC3干扰在特定位置包含错配碱基对的RNA:DNA杂交体,会导致HNH锁定在无活性的“构象检查点”构象中,从而阻碍脱靶切割。总体而言,分子动力学模拟确定了CRISPR-Cas9别构效应的基本机制,有助于开发新的CRISPR-Cas9变体以改进基因组编辑的工程策略。