Suppr超能文献

确定CRISPR-Cas9中的变构机制。

Establishing the allosteric mechanism in CRISPR-Cas9.

作者信息

Nierzwicki Łukasz, Arantes Pablo Ricardo, Saha Aakash, Palermo Giulia

机构信息

Department of Bioengineering, University of California Riverside, Riverside, California.

Department of Bioengineering and Department of Chemistry, University of California Riverside, Riverside, California.

出版信息

Wiley Interdiscip Rev Comput Mol Sci. 2021 May-Jun;11(3). doi: 10.1002/wcms.1503. Epub 2020 Oct 26.

Abstract

Allostery is a fundamental property of proteins, which regulates biochemical information transfer between spatially distant sites. Here, we report on the critical role of molecular dynamics (MD) simulations in discovering the mechanism of allosteric communication within CRISPR-Cas9, a leading genome editing machinery with enormous promises for medicine and biotechnology. MD revealed how allostery intervenes during at least three steps of the CRISPR-Cas9 function: affecting DNA recognition, mediating the cleavage and interfering with the off-target activity. An allosteric communication that activates concerted DNA cleavages was found to led through the L1/L2 loops, which connect the HNH and RuvC catalytic domains. The identification of these "allosteric transducers" inspired the development of novel variants of the Cas9 protein with improved specificity, opening a new avenue for controlling the CRISPR-Cas9 activity. Discussed studies also highlight the critical role of the recognition lobe in the conformational activation of the catalytic HNH domain. Specifically, the REC3 region was found to modulate the dynamics of HNH by sensing the formation of the RNA:DNA hybrid. The role of REC3 was revealed to be particularly relevant in the presence of DNA mismatches. Indeed, interference of REC3 with the RNA:DNA hybrid containing mismatched pairs at specific positions resulted in locking HNH in an inactive "conformational checkpoint" conformation, thereby hampering off-target cleavages. Overall, MD simulations established the fundamental mechanisms underlying the allosterism of CRISPR-Cas9, aiding engineering strategies to develop new CRISPR-Cas9 variants for improved genome editing.

摘要

别构效应是蛋白质的一种基本特性,它调节空间上相距较远的位点之间的生化信息传递。在此,我们报告分子动力学(MD)模拟在揭示CRISPR-Cas9内别构通讯机制中的关键作用,CRISPR-Cas9是一种领先的基因组编辑工具,在医学和生物技术领域有着巨大的应用前景。分子动力学揭示了别构效应如何在CRISPR-Cas9功能的至少三个步骤中发挥作用:影响DNA识别、介导切割以及干扰脱靶活性。发现一种激活协同DNA切割的别构通讯是通过连接HNH和RuvC催化结构域的L1/L2环实现的。这些“别构转导器”的鉴定激发了具有更高特异性的Cas9蛋白新变体的开发,为控制CRISPR-Cas9活性开辟了一条新途径。所讨论的研究还突出了识别叶在催化HNH结构域构象激活中的关键作用。具体而言,发现REC3区域通过感知RNA:DNA杂交体的形成来调节HNH的动力学。REC3的作用在存在DNA错配的情况下尤为重要。事实上,REC3干扰在特定位置包含错配碱基对的RNA:DNA杂交体,会导致HNH锁定在无活性的“构象检查点”构象中,从而阻碍脱靶切割。总体而言,分子动力学模拟确定了CRISPR-Cas9别构效应的基本机制,有助于开发新的CRISPR-Cas9变体以改进基因组编辑的工程策略。

相似文献

1
Establishing the allosteric mechanism in CRISPR-Cas9.
Wiley Interdiscip Rev Comput Mol Sci. 2021 May-Jun;11(3). doi: 10.1002/wcms.1503. Epub 2020 Oct 26.
2
Deciphering Off-Target Effects in CRISPR-Cas9 through Accelerated Molecular Dynamics.
ACS Cent Sci. 2019 Apr 24;5(4):651-662. doi: 10.1021/acscentsci.9b00020. Epub 2019 Mar 7.
3
Protospacer Adjacent Motif-Induced Allostery Activates CRISPR-Cas9.
J Am Chem Soc. 2017 Nov 15;139(45):16028-16031. doi: 10.1021/jacs.7b05313. Epub 2017 Aug 7.
4
Spontaneous Embedding of DNA Mismatches Within the RNA:DNA Hybrid of CRISPR-Cas9.
Front Mol Biosci. 2020 Mar 17;7:39. doi: 10.3389/fmolb.2020.00039. eCollection 2020.
6
Allosteric Motions of the CRISPR-Cas9 HNH Nuclease Probed by NMR and Molecular Dynamics.
J Am Chem Soc. 2020 Jan 22;142(3):1348-1358. doi: 10.1021/jacs.9b10521. Epub 2020 Jan 9.
7
High-fidelity, hyper-accurate, and evolved mutants rewire atomic-level communication in CRISPR-Cas9.
Sci Adv. 2024 Mar 8;10(10):eadl1045. doi: 10.1126/sciadv.adl1045. Epub 2024 Mar 6.
8
Structure and Dynamics of the CRISPR-Cas9 Catalytic Complex.
J Chem Inf Model. 2019 May 28;59(5):2394-2406. doi: 10.1021/acs.jcim.8b00988. Epub 2019 Feb 27.
9
High-Fidelity, Hyper-Accurate, and Evolved Mutants Rewire Atomic Level Communication in CRISPR-Cas9.
bioRxiv. 2023 Aug 26:2023.08.25.554853. doi: 10.1101/2023.08.25.554853.
10
Leveraging QM/MM and Molecular Dynamics Simulations to Decipher the Reaction Mechanism of the Cas9 HNH Domain to Investigate Off-Target Effects.
J Chem Inf Model. 2023 Nov 13;63(21):6834-6850. doi: 10.1021/acs.jcim.3c01284. Epub 2023 Oct 25.

引用本文的文献

1
Off-target interactions in the CRISPR-Cas9 Machinery: mechanisms and outcomes.
Biochem Biophys Rep. 2025 Jul 5;43:102134. doi: 10.1016/j.bbrep.2025.102134. eCollection 2025 Sep.
2
Flexibility in PAM recognition expands DNA targeting in xCas9.
Elife. 2025 Feb 10;13:RP102538. doi: 10.7554/eLife.102538.
3
Flexibility in PAM Recognition Expands DNA Targeting in xCas9.
bioRxiv. 2025 Jan 2:2024.08.26.609653. doi: 10.1101/2024.08.26.609653.
4
5
Graph theory approaches for molecular dynamics simulations.
Q Rev Biophys. 2024 Dec 10;57:e15. doi: 10.1017/S0033583524000143.
7
CRISPR-Based Therapies: Revolutionizing Drug Development and Precision Medicine.
Curr Gene Ther. 2024;24(3):193-207. doi: 10.2174/0115665232275754231204072320.
10
Machines on Genes through the Computational Microscope.
J Chem Theory Comput. 2023 Apr 11;19(7):1945-1964. doi: 10.1021/acs.jctc.2c01313. Epub 2023 Mar 22.

本文引用的文献

1
Catalytic Mechanism of Non-Target DNA Cleavage in CRISPR-Cas9 Revealed by Molecular Dynamics.
ACS Catal. 2020 Nov 20;10(22):13596-13605. doi: 10.1021/acscatal.0c03566. Epub 2020 Nov 10.
2
Molecular Dynamics Reveals a DNA-Induced Dynamic Switch Triggering Activation of CRISPR-Cas12a.
J Chem Inf Model. 2020 Dec 28;60(12):6427-6437. doi: 10.1021/acs.jcim.0c00929. Epub 2020 Oct 27.
3
Mechanisms of γ-Secretase Activation and Substrate Processing.
ACS Cent Sci. 2020 Jun 24;6(6):969-983. doi: 10.1021/acscentsci.0c00296. Epub 2020 Jun 4.
4
Spontaneous Embedding of DNA Mismatches Within the RNA:DNA Hybrid of CRISPR-Cas9.
Front Mol Biosci. 2020 Mar 17;7:39. doi: 10.3389/fmolb.2020.00039. eCollection 2020.
5
Molecular Modeling for Artificial Metalloenzyme Design and Optimization.
Acc Chem Res. 2020 Apr 21;53(4):896-905. doi: 10.1021/acs.accounts.0c00031. Epub 2020 Apr 1.
6
Highly Parallel Profiling of Cas9 Variant Specificity.
Mol Cell. 2020 May 21;78(4):794-800.e8. doi: 10.1016/j.molcel.2020.02.023. Epub 2020 Mar 17.
7
Allosteric regulation of CRISPR-Cas9 for DNA-targeting and cleavage.
Curr Opin Struct Biol. 2020 Jun;62:166-174. doi: 10.1016/j.sbi.2020.01.013. Epub 2020 Feb 18.
8
Recruiting Mechanism and Functional Role of a Third Metal Ion in the Enzymatic Activity of 5' Structure-Specific Nucleases.
J Am Chem Soc. 2020 Feb 12;142(6):2823-2834. doi: 10.1021/jacs.9b10656. Epub 2020 Jan 27.
9
Allosteric Motions of the CRISPR-Cas9 HNH Nuclease Probed by NMR and Molecular Dynamics.
J Am Chem Soc. 2020 Jan 22;142(3):1348-1358. doi: 10.1021/jacs.9b10521. Epub 2020 Jan 9.
10
NMR and computational methods for molecular resolution of allosteric pathways in enzyme complexes.
Biophys Rev. 2020 Feb;12(1):155-174. doi: 10.1007/s12551-019-00609-z. Epub 2019 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验