Suppr超能文献

多层次叠加用于破译蛋白质集合的构象可变性。

Multilevel superposition for deciphering the conformational variability of protein ensembles.

机构信息

Department of Biological Regulation, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.

出版信息

Brief Bioinform. 2024 Mar 27;25(3). doi: 10.1093/bib/bbae137.

Abstract

The dynamics and variability of protein conformations are directly linked to their functions. Many comparative studies of X-ray protein structures have been conducted to elucidate the relevant conformational changes, dynamics and heterogeneity. The rapid increase in the number of experimentally determined structures has made comparison an effective tool for investigating protein structures. For example, it is now possible to compare structural ensembles formed by enzyme species, variants or the type of ligands bound to them. In this study, the author developed a multilevel model for estimating two covariance matrices that represent inter- and intra-ensemble variability in the Cartesian coordinate space. Principal component analysis using the two estimated covariance matrices identified the inter-/intra-enzyme variabilities, which seemed to be important for the enzyme functions, with the illustrative examples of cytochrome P450 family 2 enzymes and class A $\beta$-lactamases. In P450, in which each enzyme has its own active site of a distinct size, an active-site motion shared universally between the enzymes was captured as the first principal mode of the intra-enzyme covariance matrix. In this case, the method was useful for understanding the conformational variability after adjusting for the differences between enzyme sizes. The developed method is advantageous in small ensemble-size problems and hence promising for use in comparative studies on experimentally determined structures where ensemble sizes are smaller than those generated, for example, by molecular dynamics simulations.

摘要

蛋白质构象的动态和可变性与其功能直接相关。已经进行了许多 X 射线蛋白质结构的比较研究,以阐明相关的构象变化、动态和异质性。实验确定的结构数量的快速增加使得比较成为研究蛋白质结构的有效工具。例如,现在可以比较酶种类、变体或与其结合的配体类型形成的结构集合。在这项研究中,作者开发了一个多层次模型来估计两个协方差矩阵,它们代表笛卡尔坐标空间中的集合间和集合内变异性。使用两个估计的协方差矩阵的主成分分析确定了酶间/内变异性,这似乎对酶功能很重要,作者以细胞色素 P450 家族 2 酶和 A 类 $\beta$-内酰胺酶为例进行了说明。在 P450 中,每个酶都有其独特大小的活性位点,酶之间普遍存在的活性位点运动被捕获为内酶协方差矩阵的第一主模式。在这种情况下,该方法有助于理解在调整酶大小差异后的构象可变性。所开发的方法在集合规模较小的问题上具有优势,因此有望用于比较研究实验确定的结构,其中集合规模小于例如通过分子动力学模拟生成的集合规模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8726/10983786/87b593190b06/bbae137f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验