Kawato M, Isobe M, Maeda Y, Suzuki R
Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Japan.
Biol Cybern. 1988;59(3):161-77. doi: 10.1007/BF00318008.
In order to control visually-guided voluntary movements, the central nervous system (CNS) must solve the following three computational problems at different levels: (1) determination of a desired trajectory in the visual coordinates, (2) transformation of the coordinates of the desired trajectory to the body coordinates and (3) generation of motor command. In this paper, the second and the third problems are treated at computational, representational and hardware levels of Marr. We first study the problems at the computational level, and then propose an iterative learning scheme as a possible algorithm. This is a trial and error type learning such as repetitive training of golf swing. The amount of motor command needed to coordinate activities of many muscles is not determined at once, but in a step-wise, trial and error fashion in the course of a set of repetitions. Actually, the motor command in the (n + 1)-th iteration is a sum of the motor command in the n-th iteration plus two modification terms which are, respectively, proportional to acceleration and speed errors between the desired trajectory and the realized trajectory in the n-th iteration. We mathematically formulate this iterative learning control as a Newton-like method in functional spaces and prove its convergence under appropriate mathematical conditions with use of dynamical system theory and functional analysis. Computer simulations of this iterative learning control of a robotic manipulator in the body or visual coordinates are shown. Finally, we propose that areas 2, 5, and 7 of the sensory association cortex are possible sites of this learning control. Further we propose neural network model which acquires transformation matrices from acceleration or velocity to motor command, which are used in these schemes.
为了控制视觉引导的自主运动,中枢神经系统(CNS)必须在不同层面解决以下三个计算问题:(1)在视觉坐标中确定期望轨迹;(2)将期望轨迹的坐标转换为身体坐标;(3)生成运动指令。在本文中,我们从马尔的计算、表征和硬件层面来探讨第二个和第三个问题。我们首先在计算层面研究这些问题,然后提出一种迭代学习方案作为一种可能的算法。这是一种试错型学习,比如高尔夫挥杆动作的重复训练。协调众多肌肉活动所需的运动指令量并非一次性确定,而是在一组重复过程中以逐步试错的方式确定。实际上,第(n + 1)次迭代中的运动指令是第n次迭代中的运动指令加上两个修正项之和,这两个修正项分别与第n次迭代中期望轨迹和实际轨迹之间的加速度误差和速度误差成正比。我们将这种迭代学习控制在函数空间中数学地表述为一种类似牛顿法的方法,并利用动力系统理论和泛函分析在适当的数学条件下证明其收敛性。展示了在身体坐标或视觉坐标下对机器人操纵器进行这种迭代学习控制的计算机模拟。最后,我们提出感觉联合皮层的2区、5区和7区可能是这种学习控制的位点。此外,我们提出神经网络模型,该模型获取从加速度或速度到运动指令的变换矩阵,这些矩阵用于这些方案中。