Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
Leiden University Medical Center, Department of Anatomy and Embryology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
Nucleic Acids Res. 2020 Jan 24;48(2):974-995. doi: 10.1093/nar/gkz1121.
Genome editing typically involves recombination between donor nucleic acids and acceptor genomic sequences subjected to double-stranded DNA breaks (DSBs) made by programmable nucleases (e.g. CRISPR-Cas9). Yet, nucleases yield off-target mutations and, most pervasively, unpredictable target allele disruptions. Remarkably, to date, the untoward phenotypic consequences of disrupting allelic and non-allelic (e.g. pseudogene) sequences have received scant scrutiny and, crucially, remain to be addressed. Here, we demonstrate that gene-edited cells can lose fitness as a result of DSBs at allelic and non-allelic target sites and report that simultaneous single-stranded DNA break formation at donor and acceptor DNA by CRISPR-Cas9 nickases (in trans paired nicking) mostly overcomes such disruptive genotype-phenotype associations. Moreover, in trans paired nicking gene editing can efficiently and precisely add large DNA segments into essential and multiple-copy genomic sites. As shown herein by genotyping assays and high-throughput genome-wide sequencing of DNA translocations, this is achieved while circumventing most allelic and non-allelic mutations and chromosomal rearrangements characteristic of nuclease-dependent procedures. Our work demonstrates that in trans paired nicking retains target protein dosages in gene-edited cell populations and expands gene editing to chromosomal tracts previously not possible to modify seamlessly due to their recurrence in the genome or essentiality for cell function.
基因组编辑通常涉及供体核酸与受纳基因组序列之间的重组,这些序列受到可编程核酸酶(如 CRISPR-Cas9)造成的双链 DNA 断裂(DSB)的影响。然而,核酸酶会产生脱靶突变,而且最普遍的是,不可预测的靶标等位基因破坏。值得注意的是,迄今为止,破坏等位基因和非等位基因(如假基因)序列的不良表型后果几乎没有受到关注,而且这一问题亟待解决。在这里,我们证明基因编辑细胞可能会因为等位基因和非等位基因靶位的 DSB 而失去适应性,并且报告说 CRISPR-Cas9 切口酶(在转位配对切口)同时在供体和受体 DNA 上形成单链 DNA 断裂,在很大程度上克服了这种破坏基因型-表型关联。此外,在转位配对切口基因编辑可以有效地、精确地将大的 DNA 片段添加到必需的和多拷贝的基因组位点。正如本文通过基因分型测定和对 DNA 易位的高通量全基因组测序所显示的那样,这是在避免大多数依赖核酸酶的程序所特有的等位基因和非等位基因突变和染色体重排的情况下实现的。我们的工作表明,在转位配对切口在基因编辑细胞群体中保留了靶蛋白剂量,并将基因编辑扩展到以前由于基因组中的重复或对细胞功能的必要性而无法无缝修饰的染色体片段。