Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
Nucleic Acids Res. 2023 Apr 24;51(7):3465-3484. doi: 10.1093/nar/gkad165.
Homology-directed recombination (HDR) between donor constructs and acceptor genomic sequences cleaved by programmable nucleases, permits installing large genomic edits in mammalian cells in a precise fashion. Yet, next to precise gene knock-ins, programmable nucleases yield unintended genomic modifications resulting from non-homologous end-joining processes. Alternatively, in trans paired nicking (ITPN) involving tandem single-strand DNA breaks at target loci and exogenous donor constructs by CRISPR-Cas9 nickases, fosters seamless and scarless genome editing. In the present study, we identified high-specificity CRISPR-Cas9 nucleases capable of outperforming parental CRISPR-Cas9 nucleases in directing genome editing through homologous recombination (HR) and homology-mediated end joining (HMEJ) with donor constructs having regular and 'double-cut' designs, respectively. Additionally, we explored the ITPN principle by demonstrating its compatibility with orthogonal and high-specificity CRISPR-Cas9 nickases and, importantly, report that in human induced pluripotent stem cells (iPSCs), in contrast to high-specificity CRISPR-Cas9 nucleases, neither regular nor high-specificity CRISPR-Cas9 nickases activate P53 signaling, a DNA damage-sensing response linked to the emergence of gene-edited cells with tumor-associated mutations. Finally, experiments in human iPSCs revealed that differently from HR and HMEJ genome editing based on high-specificity CRISPR-Cas9 nucleases, ITPN involving high-specificity CRISPR-Cas9 nickases permits editing allelic sequences associated with essentiality and recurrence in the genome.
同源定向重组 (HDR) 可将供体构建物与可编程核酸内切酶切割的受体基因组序列进行配对,从而以精确的方式在哺乳动物细胞中安装大片段基因组编辑。然而,除了精确的基因敲入外,可编程核酸内切酶还会产生非同源末端连接过程引起的非预期基因组修饰。或者,在涉及靶向基因座处的串联单链 DNA 断裂和外源性供体构建物的转座配对 nicking (ITPN) 中,CRISPR-Cas9 核酸酶的 Nickase 可促进无缝和无疤痕的基因组编辑。在本研究中,我们鉴定了高特异性的 CRISPR-Cas9 核酸酶,它们能够通过同源重组 (HR) 和同源介导的末端连接 (HMEJ) 来指导基因组编辑,其效率优于亲本 CRISPR-Cas9 核酸酶,而供体构建物分别具有常规和“双切”设计。此外,我们通过证明其与正交和高特异性的 CRISPR-Cas9 核酸酶的兼容性来探索 ITPN 原理,重要的是,报告在人类诱导多能干细胞 (iPSCs) 中,与高特异性的 CRISPR-Cas9 核酸酶相反,常规和高特异性的 CRISPR-Cas9 核酸酶都不会激活 P53 信号通路,该通路是一种与具有肿瘤相关突变的基因编辑细胞出现相关的 DNA 损伤感应反应。最后,在人类 iPSCs 中的实验表明,与基于高特异性的 CRISPR-Cas9 核酸酶的 HR 和 HMEJ 基因组编辑不同,涉及高特异性的 CRISPR-Cas9 核酸酶的 Nickase 的 ITPN 可编辑与基因组中的必需性和复发相关的等位序列。