Suppr超能文献

停流光刻法中的复杂形状软温度响应微凝胶。

Soft temperature-responsive microgels of complex shape in stop-flow lithography.

机构信息

RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.

DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.

出版信息

Lab Chip. 2020 Jan 21;20(2):285-295. doi: 10.1039/c9lc00749k. Epub 2019 Dec 5.

Abstract

Stop-flow lithography (SFL) has emerged as a facile high-throughput fabrication method for μm-sized anisometric particles; yet, the fabrication of soft, anisometric microgels has not frequently been addressed in the literature. Furthermore, and to the best of the authors' knowledge, no soft, complex-shaped microgels with temperature-responsive behavior have been fabricated with this technology before. However, such microgels have tremendous potential as building blocks and actuating elements in rapidly developing fields, such as tissue engineering and additive manufacturing of soft polymeric building blocks, bio-hybrid materials, or soft micro-robotics. Given their great potential, we prove in this work that SFL is a viable method for the fabrication of soft, temperature-responsive, and complex-shaped microgels. The microgels, fabricated in this work, consist of poly(N-isopropylacrylamide) (pNIPAm), which is crosslinked with N,N'-methylenebis(acrylamide). The results confirm that the shape of the pNIPAm microgels is determined by the transparency mask, used in SFL. Furthermore, it is shown that, in order to realize stable microgels, a minimum threshold of crosslinker concentration of 2 wt% is required. Above this threshold, the stiffness of pNIPAm microgels can be deliberately altered by adjusting the concentration of the crosslinker. The fabricated pNIPAm microgels show the targeted temperature-responsive behavior. Within this context, temperature-dependent reversible swelling is confirmed, even for fractal-like geometries, such as micro snowflakes. Thus, these microgels provide the targeted unique combination of softness, shape complexity, and temperature responsiveness and increase the freedom of design for actuated building blocks.

摘要

停流光刻(SFL)已成为一种简便的高通量制造方法,可用于制造μm 大小的各向异性颗粒;然而,在文献中,很少有关于软质各向异性微凝胶的制造的报道。此外,据作者所知,以前从未使用该技术制造过具有温度响应行为的软质、复杂形状的微凝胶。然而,在组织工程和软质聚合物构建块的增材制造、生物混合材料或软微型机器人等快速发展领域中,这些微凝胶具有巨大的应用潜力。鉴于其巨大的潜力,我们在这项工作中证明了 SFL 是制造软质、温度响应和复杂形状的微凝胶的可行方法。在这项工作中制造的微凝胶由聚(N-异丙基丙烯酰胺)(pNIPAm)组成,其与 N,N'-亚甲基双丙烯酰胺交联。结果证实,pNIPAm 微凝胶的形状由 SFL 中使用的透明掩模决定。此外,结果表明,为了实现稳定的微凝胶,需要至少 2wt%的交联剂浓度作为阈值。在此阈值之上,可以通过调整交联剂的浓度来有意改变 pNIPAm 微凝胶的刚度。所制造的 pNIPAm 微凝胶表现出目标的温度响应行为。在这种情况下,即使对于分形样的几何形状,如微雪花,也证实了温度依赖性的可逆溶胀。因此,这些微凝胶提供了目标的柔软性、形状复杂性和温度响应的独特组合,为致动构建块的设计增加了自由度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验