Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, Aachen, 52074, Germany.
Institute of Biology II, RWTH Aachen University, Worringerweg 3, Aachen, 52074, Germany.
Adv Healthc Mater. 2021 Oct;10(20):e2100898. doi: 10.1002/adhm.202100898. Epub 2021 Jul 31.
For successful material deployment in tissue engineering, the material itself, its mechanical properties, and the microscopic geometry of the product are of particular interest. While silk is a widely applied protein-based tissue engineering material with strong mechanical properties, the size and shape of artificially spun silk fibers are limited by existing processes. This study adjusts a microfluidic spinneret to manufacture micron-sized wet-spun fibers with three different materials enabling diverse geometries for tissue engineering applications. The spinneret is direct laser written (DLW) inside a microfluidic polydimethylsiloxane (PDMS) chip using two-photon lithography, applying a novel surface treatment that enables a tight print-channel sealing. Alginate, polyacrylonitrile, and silk fibers with diameters down to 1 µm are spun, while the spinneret geometry controls the shape of the silk fiber, and the spinning process tailors the mechanical property. Cell-cultivation experiments affirm bio-compatibility and showcase an interplay between the cell-sized fibers and cells. The presented spinning process pushes the boundaries of fiber fabrication toward smaller diameters and more complex shapes with increased surface-to-volume ratio and will substantially contribute to future tailored tissue engineering materials for healthcare applications.
为了在组织工程中成功应用材料,材料本身、其机械性能以及产品的微观几何形状都具有特别的意义。尽管丝是一种被广泛应用的具有较强机械性能的基于蛋白质的组织工程材料,但人工纺丝纤维的尺寸和形状受到现有工艺的限制。本研究调整了微流控纺丝头,使用双光子光刻技术在微流控聚二甲基硅氧烷(PDMS)芯片内直接写入(DLW),应用了一种新的表面处理方法,实现了紧密的打印通道密封。可以纺出直径低至 1 µm 的海藻酸盐、聚丙烯腈和丝纤维,而纺丝头的几何形状控制着丝纤维的形状,纺丝过程则调整了机械性能。细胞培养实验证实了生物兼容性,并展示了细胞大小的纤维与细胞之间的相互作用。所提出的纺丝工艺将纤维制造的界限推向更小的直径和更复杂的形状,增加了表面积与体积比,将为未来医疗保健应用的定制组织工程材料做出重大贡献。