Stroud R M, Agard D A
Biophys J. 1979 Mar;25(3):495-512. doi: 10.1016/S0006-3495(79)85319-9.
An iterative Fourier method is applied to solving and refining the electron density profile projected into the line perpendicular to a membrane surface. Solutions to the continuous X-ray scattering pattern derived from swelling of multilayer systems or from membrane dispersions can be obtained by this technique. The method deals directly with the observed structure factors and does not rely on deconvolution of the Patterson function. We used this method previously to derive the electron density profile for acetylcholine receptor membranes (Ross et al., 1977). The present paper is an analysis of the theoretical basis for the procedure. In addition, the technique is tested on artificially generated continuous-scattering data, on the data for frog sciatic nerve myelin derived from swelling experiments by Worthington and McIntosh (1974), and on the data for purple membrane (Blaurock and Stoeckenius, 1971). Although the method applies to asymmetric membranes, the special case of centrosymmetric profiles is also shown to be solvable by the same technique. The limitations of the method and the boundary conditions that limit the degeneracy of the solution are analyzed.
一种迭代傅里叶方法被应用于求解和细化投影到垂直于膜表面的直线上的电子密度分布。通过这种技术可以获得从多层系统膨胀或膜分散体得到的连续X射线散射图案的解。该方法直接处理观测到的结构因子,不依赖于帕特森函数的反卷积。我们之前使用这种方法推导了乙酰胆碱受体膜的电子密度分布(罗斯等人,1977年)。本文是对该程序理论基础的分析。此外,该技术在人工生成的连续散射数据、沃辛顿和麦金托什(1974年)通过膨胀实验得到的青蛙坐骨神经髓磷脂数据以及紫膜数据(布劳罗克和斯托克纽斯,1971年)上进行了测试。尽管该方法适用于不对称膜,但中心对称分布的特殊情况也被证明可以用相同的技术求解。分析了该方法的局限性以及限制解的简并性的边界条件。