Department of Molecular Physiology and Biophysics, Center for Structural Biology, and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
Science. 2019 Dec 6;366(6470):1259-1263. doi: 10.1126/science.aay2783.
In the brain, AMPA-type glutamate receptors (AMPARs) form complexes with their auxiliary subunits and mediate the majority of fast excitatory neurotransmission. Signals transduced by these complexes are critical for synaptic plasticity, learning, and memory. The two major categories of AMPAR auxiliary subunits are transmembrane AMPAR regulatory proteins (TARPs) and cornichon homologs (CNIHs); these subunits share little homology and play distinct roles in controlling ion channel gating and trafficking of AMPAR. Here, I report high-resolution cryo-electron microscopy structures of AMPAR in complex with CNIH3. Contrary to its predicted membrane topology, CNIH3 lacks an extracellular domain and instead contains four membrane-spanning helices. The protein-protein interaction interface that dictates channel modulation and the lipids surrounding the complex are revealed. These structures provide insights into the molecular mechanism for ion channel modulation and assembly of AMPAR/CNIH3 complexes.
在大脑中,AMPA 型谷氨酸受体 (AMPAR) 与辅助亚基形成复合物,介导大多数快速兴奋性神经递质传递。这些复合物转导的信号对于突触可塑性、学习和记忆至关重要。AMPAR 辅助亚基的两个主要类别是跨膜 AMPAR 调节蛋白 (TARPs) 和 Cornichon 同源物 (CNIHs);这些亚基同源性很小,在控制离子通道门控和 AMPAR 运输方面发挥着不同的作用。在这里,我报告了 AMPAR 与 CNIH3 形成复合物的高分辨率冷冻电镜结构。与预测的膜拓扑结构相反,CNIH3 缺乏细胞外结构域,而是包含四个跨膜螺旋。揭示了决定通道调节的蛋白-蛋白相互作用界面以及围绕复合物的脂质。这些结构为离子通道调节和 AMPAR/CNIH3 复合物组装的分子机制提供了见解。