Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA.
Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA.
J Physiol. 2021 Jan;599(2):453-469. doi: 10.1113/JP278701. Epub 2020 Feb 18.
Fast excitatory synaptic transmission in the mammalian brain is largely mediated by AMPA-type ionotropic glutamate receptors (AMPARs), which are activated by the neurotransmitter glutamate. In synapses, the function of AMPARs is tuned by their auxiliary subunits, a diverse set of membrane proteins associated with the core pore-forming subunits of the AMPARs. Each auxiliary subunit provides distinct functional modulation of AMPARs, ranging from regulation of trafficking to shaping ion channel gating kinetics. Understanding the molecular mechanism of the function of these complexes is key to decoding synaptic modulation and their global roles in cognitive activities, such as learning and memory. Here, we review the structural and molecular complexity of AMPAR-auxiliary subunit complexes, as well as their functional diversity in different brain regions. We suggest that the recent structural information provides new insights into the molecular mechanisms underlying synaptic functions of AMPAR-auxiliary subunit complexes.
哺乳动物大脑中的快速兴奋性突触传递主要由 AMPA 型离子型谷氨酸受体 (AMPARs)介导,其被神经递质谷氨酸激活。在突触中,AMPAR 的功能由其辅助亚基调节,辅助亚基是一组与 AMPAR 的核心孔形成亚基相关的多样化膜蛋白。每个辅助亚基都对 AMPAR 进行独特的功能调节,从运输调控到塑造离子通道门控动力学。了解这些复合物的功能的分子机制是解码突触调节及其在认知活动(如学习和记忆)中的全局作用的关键。在这里,我们回顾了 AMPAR-辅助亚基复合物的结构和分子复杂性,以及它们在不同脑区的功能多样性。我们认为,最近的结构信息为 AMPAR-辅助亚基复合物的突触功能的分子机制提供了新的见解。