Integrated Program in Neuroscience, McGill University, Montréal, Quebec H3A 2B4, Canada.
Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec H3G 1Y6, Canada.
J Neurosci. 2023 Apr 19;43(16):2837-2849. doi: 10.1523/JNEUROSCI.2293-22.2023. Epub 2023 Mar 17.
Alternative splicing of AMPA-type glutamate receptors (AMPARs) and allosteric modulation by auxiliary subunits, such as transmembrane AMPAR regulatory proteins (TARPs), are two important mechanisms that regulate the time course of glutamatergic neurotransmission. Prior work has shown that alternative splicing of the flip/flop cassette profoundly regulates TARP γ2 modulation, where flip receptor gating exhibits robust sensitivity to TARPs while flop isoforms are relatively insensitive to TARP modulation. Whether this splice variant-specific regulation extends to other auxiliary subunit families, such as cornichons (CNIHs), GSG1L, or CKAMPs, remains unknown. Here, we demonstrate that CNIH-3 modulation is unaffected by AMPAR alternative splicing due to inherent differences in how CNIH-3 and TARP γ2 modify channel gating. CNIH-3 slows receptor deactivation from the outset of current decay, consistent with structural evidence showing its point of contact at the level of the pore. In contrast, TARP γ2 acts via the KGK site of the ligand-binding domain (LBD) to slow the onset of desensitization. Although GSG1L and CKAMP44 primarily slow recovery from desensitization, their effects on channel gating are unaffected by alternative splicing, further underlining that structural events leading to the onset and recovery from desensitization are separable. Together, this work establishes that alternative splicing and TARP auxiliary subunits form a unique partnership that governs fast glutamatergic signaling at central synapses. Since proteomic studies suggest that all native AMPARs co-assemble with at least two TARPs, allosteric coupling between the flip/flop cassette and TARPs may represent a common design element in all AMPAR complexes of the mammalian brain. All fast excitatory neurotransmission in the mammalian brain is mediated by AMPA-type glutamate receptors (AMPARs). The time course of AMPAR gating can be regulated by two distinct mechanisms: alternative splicing of the flip/flop cassette and association with auxiliary subunits. Although these regulatory mechanisms have been well studied individually, it is not clear whether alternative splicing impacts auxiliary protein modulation of AMPARs. Here, we compare the four main families of AMPAR auxiliary subunits, transmembrane AMPAR regulatory proteins (TARPs; γ2), cornichons (CNIH-3), GSG1L and CKAMPs (CKAMP44), and find a privileged relationship between TARPs and the flip/flop cassette that is not shared by others. The flop cassette acts as a master switch to override TARP action, and this coupling represents a way to fine-tune AMPAR signaling.
AMPA 型谷氨酸受体 (AMPARs) 的选择性剪接和辅助亚基的变构调节,如跨膜 AMPAR 调节蛋白 (TARPs),是调节谷氨酸能神经传递时间过程的两个重要机制。先前的工作表明,翻转/翻转盒的选择性剪接深刻地调节了 TARP γ2 的调节,其中翻转受体门控对 TARPs 表现出强烈的敏感性,而翻转异构体对 TARP 调节相对不敏感。这种剪接变体特异性调节是否扩展到其他辅助亚基家族,如玉米素 (CNIHs)、GSG1L 或 CKAMPs,尚不清楚。在这里,我们证明由于 CNIH-3 和 TARP γ2 改变通道门控的方式存在内在差异,CNIH-3 的调节不受 AMPAR 选择性剪接的影响。CNIH-3 从电流衰减开始就使受体失活减慢,这与结构证据一致,表明其接触点在孔水平。相比之下,TARP γ2 通过配体结合域 (LBD) 的 KGK 位点作用以减缓脱敏的开始。尽管 GSG1L 和 CKAMP44 主要减缓脱敏后的恢复,但它们对通道门控的影响不受选择性剪接的影响,进一步强调导致脱敏开始和恢复的结构事件是可分离的。总之,这项工作确立了选择性剪接和 TARP 辅助亚基形成了一种独特的伙伴关系,控制着中枢突触的快速谷氨酸能信号传递。由于蛋白质组学研究表明所有天然的 AMPAR 都至少与两个 TARPs 组装在一起,flip/flop 盒和 TARPs 之间的变构偶联可能是哺乳动物大脑中所有 AMPAR 复合物的共同设计元素。哺乳动物大脑中的所有快速兴奋性神经传递都是由 AMPA 型谷氨酸受体 (AMPARs)介导的。AMPAR 门控的时间过程可以通过两种不同的机制进行调节:flip/flop 盒的选择性剪接和与辅助亚基的结合。尽管这些调节机制已经得到了很好的研究,但尚不清楚选择性剪接是否会影响辅助蛋白对 AMPAR 的调节。在这里,我们比较了 AMPAR 辅助亚基的四个主要家族,跨膜 AMPAR 调节蛋白 (TARPs; γ2)、玉米素 (CNIH-3)、GSG1L 和 CKAMPs (CKAMP44),发现 TARPs 和 flip/flop 盒之间存在一种特殊的关系,而其他亚基则没有。flip 盒充当主开关以覆盖 TARP 的作用,这种耦合代表了一种微调 AMPAR 信号的方式。