Braidy Nadi, Gosselin Ryan
Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke. 2500 Boul, de l'Université, Sherbrooke, PQ, J1K 2R1, Canada.
Institut Interdisciplinaire d'Innovation Technologique (3IT), Sherbrooke, PQ, J1K 0A5, Canada.
Sci Rep. 2019 Dec 11;9(1):18797. doi: 10.1038/s41598-019-55219-2.
Analytical electron microscopy plays a key role in the development of novel nanomaterials. Electron energy-loss spectroscopy (EELS) and energy-dispersive X-ray spectroscopy (EDX) datasets are typically processed to isolate the background-subtracted elemental signal. Multivariate tools have emerged as powerful methods to blindly map the components, which addresses some of the shortcomings of the traditional methods. Here, we demonstrate the superior performance of a new multivariate optimization method using a challenging EELS and EDX dataset. The dataset was recorded from a spectrum image P-type metal-oxide-semiconductor stack with 7 components exhibiting heavy spectral overlap and a low signal-to-noise ratio. Compared to peak integration, independent component analysis, Baysian Linear Unmixing and Non-negative matrix factorization, the method proposed was the only one to identify the EELS spectra of all 7 components with the corresponding abundance profiles. Using the abundance of each component, it was possible to retrieve the EDX spectra of all the components, which were otherwise impossible to isolate, regardless of the method used. We expect that this robust method will bring a significant improvement for the chemical analysis of nanomaterials, especially for weak signals, dose-sensitive specimen or signals suffering heavy spectral overlap.
分析电子显微镜在新型纳米材料的开发中起着关键作用。电子能量损失谱(EELS)和能量色散X射线谱(EDX)数据集通常经过处理,以分离出扣除背景后的元素信号。多变量工具已成为盲目映射成分的强大方法,解决了传统方法的一些缺点。在这里,我们使用具有挑战性的EELS和EDX数据集展示了一种新的多变量优化方法的卓越性能。该数据集是从具有7个成分的光谱图像P型金属氧化物半导体堆栈中记录的,这些成分表现出严重的光谱重叠和低信噪比。与峰值积分、独立成分分析、贝叶斯线性解混和非负矩阵分解相比,所提出的方法是唯一能够识别所有7个成分的EELS光谱及其相应丰度分布的方法。利用每个成分的丰度,可以检索出所有成分的EDX光谱,否则无论使用何种方法都无法分离这些光谱。我们预计,这种强大的方法将为纳米材料的化学分析带来显著改进,特别是对于微弱信号、剂量敏感样本或遭受严重光谱重叠的信号。