Chen Hui, Alexander Duncan T L, Hébert Cécile
Electron Spectrometry and Microscopy Laboratory (LSME), Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Nano Lett. 2024 Aug 21;24(33):10177-10185. doi: 10.1021/acs.nanolett.4c02446. Epub 2024 Aug 6.
Energy dispersive X-ray (EDX) spectroscopy in the transmission electron microscope is a key tool for nanomaterials analysis, providing a direct link between spatial and chemical information. However, using it for precisely determining chemical compositions presents challenges of noisy data from low X-ray yields and mixed signals from phases that overlap along the electron beam trajectory. Here, we introduce a novel method, non-negative matrix factorization based pan-sharpening (PSNMF), to address these limitations. Leveraging the Poisson nature of EDX spectral noise and binning operations, PSNMF retrieves high-quality phase spectral and spatial signatures via consecutive factorizations. After validating PSNMF with synthetic data sets of different noise levels, we illustrate its effectiveness on two distinct experimental cases: a nanomineralogical lamella, and supported catalytic nanoparticles. Not only does PSNMF obtain accurate phase signatures, but data sets reconstructed from the outputs have demonstrably lower noise and better fidelity than from the benchmark denoising method of principle component analysis.
透射电子显微镜中的能量色散X射线(EDX)光谱是纳米材料分析的关键工具,它能在空间信息和化学信息之间建立直接联系。然而,使用它精确测定化学成分存在挑战,原因在于低X射线产率产生的噪声数据以及沿电子束轨迹重叠的相产生的混合信号。在此,我们引入一种新方法,即基于非负矩阵分解的全色锐化(PSNMF),以解决这些局限性。利用EDX光谱噪声的泊松性质和分箱操作,PSNMF通过连续分解检索高质量的相光谱和空间特征。在用不同噪声水平的合成数据集验证PSNMF之后,我们在两个不同的实验案例中说明了它的有效性:一个纳米矿物薄片和负载型催化纳米颗粒。PSNMF不仅能获得准确的相特征,而且从输出结果重建的数据集相比主成分分析这一基准去噪方法,具有明显更低的噪声和更高的保真度。