Teunissen Abraham J P, Paffen Tim F E, Filot Ivo A W, Lanting Menno D, van der Haas Roy J C, de Greef Tom F A, Meijer E W
Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands . Email:
Laboratory of Macromolecular and Organic Chemistry , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands.
Chem Sci. 2019 Aug 14;10(39):9115-9124. doi: 10.1039/c9sc02357g. eCollection 2019 Oct 21.
The adaptivity of biological reaction networks largely arises through non-covalent regulation of catalysts' activity. Such type of catalyst control is still nascent in synthetic chemical networks and thereby hampers their ability to display life-like behavior. Here, we report a bio-inspired system in which non-covalent interactions between two complementary phase-transfer catalysts are used to regulate reaction kinetics. While one catalyst gives bimolecular kinetics, the second displays autoinductive feedback, resulting in sigmoidal kinetics. When both catalysts are combined, the interactions between them allow rational control over the shape of the kinetic curves. Computational models are used to gain insight into the structure, interplay, and activity of each catalytic species, and the scope of the system is examined by optimizing the linearity of the kinetic curves. Combined, our findings highlight the effectiveness of regulating reaction kinetics using non-covalent catalyst interactions, but also emphasize the risk for unforeseen catalytic contributions in complex systems and the necessity to combine detailed experiments with kinetic modelling.
生物反应网络的适应性很大程度上源于对催化剂活性的非共价调节。这种类型的催化剂控制在合成化学网络中仍处于起步阶段,因此阻碍了它们展现类似生命行为的能力。在此,我们报告了一个受生物启发的系统,其中两种互补的相转移催化剂之间的非共价相互作用被用于调节反应动力学。一种催化剂呈现双分子动力学,而另一种则显示自诱导反馈,从而产生S形动力学。当两种催化剂结合时,它们之间的相互作用允许对动力学曲线的形状进行合理控制。使用计算模型来深入了解每种催化物种的结构、相互作用和活性,并通过优化动力学曲线的线性来考察该系统的范围。综合来看,我们的研究结果突出了利用非共价催化剂相互作用调节反应动力学的有效性,但也强调了在复杂系统中存在意外催化贡献的风险以及将详细实验与动力学建模相结合的必要性。