Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, København N, Denmark.
Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100, København Ø, Denmark.
BMC Bioinformatics. 2019 Dec 12;20(1):663. doi: 10.1186/s12859-019-3160-3.
Circular DNA has recently been identified across different species including human normal and cancerous tissue, but short-read mappers are unable to align many of the reads crossing circle junctions hence limiting their detection from short-read sequencing data.
Here, we propose a new method, Circle-Map that guides the realignment of partially aligned reads using information from discordantly mapped reads to map the short unaligned portions using a probabilistic model. We compared Circle-Map to similar up-to-date methods for circular DNA and RNA detection and we demonstrate how the approach implemented in Circle-Map dramatically increases sensitivity for detection of circular DNA on both simulated and real data while retaining high precision.
Circle-Map is an easy-to-use command line tool that implements the required pipeline to accurately detect circular DNA from circle enriched next generation sequencing experiments. Circle-Map is implemented in python3.6 and it is freely available at https://github.com/iprada/Circle-Map.
环状 DNA 最近在包括人类正常组织和癌变组织在内的不同物种中被发现,但短读长映射器无法对齐许多跨越环连接点的读段,从而限制了它们从短读长测序数据中的检测。
在这里,我们提出了一种新方法 Circle-Map,它使用来自不一致映射读段的信息来引导部分对齐读段的重对齐,以便使用概率模型来映射短未对齐部分。我们将 Circle-Map 与最新的类似环状 DNA 和 RNA 检测方法进行了比较,并展示了 Circle-Map 中实现的方法如何在模拟和真实数据上显著提高环状 DNA 的检测灵敏度,同时保持高精确度。
Circle-Map 是一个易于使用的命令行工具,它实现了从富集环状的下一代测序实验中准确检测环状 DNA 所需的管道。Circle-Map 是用 python3.6 实现的,可在 https://github.com/iprada/Circle-Map 上免费获取。