Suppr超能文献

测序的 DNA 甲基化数据:实验方法以及数据分析工具和流程的建议。

DNA methylation data by sequencing: experimental approaches and recommendations for tools and pipelines for data analysis.

机构信息

Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, P.O. Box 8905, NO-7491, Trondheim, Norway.

Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, NO-7030, Trondheim, Norway.

出版信息

Clin Epigenetics. 2019 Dec 12;11(1):193. doi: 10.1186/s13148-019-0795-x.

Abstract

Sequencing technologies have changed not only our approaches to classical genetics, but also the field of epigenetics. Specific methods allow scientists to identify novel genome-wide epigenetic patterns of DNA methylation down to single-nucleotide resolution. DNA methylation is the most researched epigenetic mark involved in various processes in the human cell, including gene regulation and development of diseases, such as cancer. Increasing numbers of DNA methylation sequencing datasets from human genome are produced using various platforms-from methylated DNA precipitation to the whole genome bisulfite sequencing. Many of those datasets are fully accessible for repeated analyses. Sequencing experiments have become routine in laboratories around the world, while analysis of outcoming data is still a challenge among the majority of scientists, since in many cases it requires advanced computational skills. Even though various tools are being created and published, guidelines for their selection are often not clear, especially to non-bioinformaticians with limited experience in computational analyses. Separate tools are often used for individual steps in the analysis, and these can be challenging to manage and integrate. However, in some instances, tools are combined into pipelines that are capable to complete all the essential steps to achieve the result. In the case of DNA methylation sequencing analysis, the goal of such pipeline is to map sequencing reads, calculate methylation levels, and distinguish differentially methylated positions and/or regions. The objective of this review is to describe basic principles and steps in the analysis of DNA methylation sequencing data that in particular have been used for mammalian genomes, and more importantly to present and discuss the most pronounced computational pipelines that can be used to analyze such data. We aim to provide a good starting point for scientists with limited experience in computational analyses of DNA methylation and hydroxymethylation data, and recommend a few tools that are powerful, but still easy enough to use for their own data analysis.

摘要

测序技术不仅改变了我们对经典遗传学的方法,也改变了表观遗传学领域。特定的方法使科学家能够以单核苷酸分辨率识别新的全基因组 DNA 甲基化表观遗传模式。DNA 甲基化是涉及人类细胞中各种过程的研究最多的表观遗传标记,包括基因调控和疾病的发展,如癌症。使用各种平台——从甲基化 DNA 沉淀到全基因组亚硫酸氢盐测序——从人类基因组中产生了越来越多的 DNA 甲基化测序数据集。这些数据集中有许多可以进行重复分析。测序实验已经成为世界各地实验室的常规操作,而对输出数据的分析仍然是大多数科学家面临的挑战,因为在许多情况下,它需要先进的计算技能。尽管正在创建和发布各种工具,但对于没有生物信息学背景且在计算分析方面经验有限的人来说,选择这些工具的指南通常并不明确。通常为分析中的各个步骤使用单独的工具,这些工具可能难以管理和集成。然而,在某些情况下,工具被组合成能够完成实现结果所需的所有基本步骤的管道。在 DNA 甲基化测序分析的情况下,这种管道的目标是映射测序读取,计算甲基化水平,并区分差异甲基化的位置和/或区域。本综述的目的是描述 DNA 甲基化测序数据分析的基本原理和步骤,特别是在哺乳动物基因组中使用的原理和步骤,更重要的是介绍和讨论可用于分析此类数据的最显著的计算管道。我们旨在为计算分析 DNA 甲基化和羟甲基化数据经验有限的科学家提供一个良好的起点,并推荐一些功能强大但仍易于使用的工具,供他们自己进行数据分析。

相似文献

2
Whole-Genome Bisulfite Sequencing for the Methylation Analysis of Insect Genomes.
Methods Mol Biol. 2019;1858:141-156. doi: 10.1007/978-1-4939-8775-7_11.
3
MethGo: a comprehensive tool for analyzing whole-genome bisulfite sequencing data.
BMC Genomics. 2015;16 Suppl 12(Suppl 12):S11. doi: 10.1186/1471-2164-16-S12-S11. Epub 2015 Dec 9.
5
BS-Seeker3: ultrafast pipeline for bisulfite sequencing.
BMC Bioinformatics. 2018 Apr 3;19(1):111. doi: 10.1186/s12859-018-2120-7.
6
Methy-Pipe: an integrated bioinformatics pipeline for whole genome bisulfite sequencing data analysis.
PLoS One. 2014 Jun 19;9(6):e100360. doi: 10.1371/journal.pone.0100360. eCollection 2014.
7
wg-blimp: an end-to-end analysis pipeline for whole genome bisulfite sequencing data.
BMC Bioinformatics. 2020 May 1;21(1):169. doi: 10.1186/s12859-020-3470-5.
9
Bioinformatic Analysis of Methylation Patterns Using Bisulfite Sequencing Data.
Methods Mol Biol. 2019;1858:157-175. doi: 10.1007/978-1-4939-8775-7_12.

引用本文的文献

1
Acetylation-Mediated Epigenetic Consequences for Biological Control and Cancer.
Results Probl Cell Differ. 2025;75:25-69. doi: 10.1007/978-3-031-91459-1_2.
2
From DNA to Big Data: NGS Technologies and Their Applications.
Methods Mol Biol. 2025;2952:459-482. doi: 10.1007/978-1-0716-4690-8_25.
3
The Role of Pattern Recognition Receptors in Epigenetic and Metabolic Reprogramming: Insights into Trained Immunity.
J Inflamm Res. 2025 Jun 13;18:7795-7811. doi: 10.2147/JIR.S513325. eCollection 2025.
4
Artificial Intelligence in cancer epigenomics: a review on advances in pan-cancer detection and precision medicine.
Epigenetics Chromatin. 2025 Jun 14;18(1):35. doi: 10.1186/s13072-025-00595-5.
5
Deciphering gene mutations in the efficacy and toxicity of antineoplastic drugs: an oncology pharmacist's perspective.
Front Pharmacol. 2025 Mar 20;16:1574010. doi: 10.3389/fphar.2025.1574010. eCollection 2025.
6
Role of epigenetics in paediatric cancer pathogenesis & drug resistance.
Br J Cancer. 2025 May;132(9):757-769. doi: 10.1038/s41416-025-02961-2. Epub 2025 Mar 7.
7
Exploring the complexities of epigenetics in multiple sclerosis: A study involving meta-analysis of DNA methylation profiles, epigenetic drift, and rare epivariations.
Mult Scler J Exp Transl Clin. 2024 Dec 5;10(4):20552173241296726. doi: 10.1177/20552173241296726. eCollection 2024 Oct-Dec.
10
Toward DNA-Based Recording of Biological Processes.
Int J Mol Sci. 2024 Aug 26;25(17):9233. doi: 10.3390/ijms25179233.

本文引用的文献

1
BioMethyl: an R package for biological interpretation of DNA methylation data.
Bioinformatics. 2019 Oct 1;35(19):3635-3641. doi: 10.1093/bioinformatics/btz137.
2
Considerations for Genomic Data Privacy and Security when Working in the Cloud.
J Mol Diagn. 2019 Jul;21(4):542-552. doi: 10.1016/j.jmoldx.2018.07.009. Epub 2019 Jan 28.
3
Observational health research in Europe: understanding the General Data Protection Regulation and underlying debate.
Eur J Cancer. 2018 Nov;104:70-80. doi: 10.1016/j.ejca.2018.09.032. Epub 2018 Oct 15.
5
Principles of DNA methylation and their implications for biology and medicine.
Lancet. 2018 Sep 1;392(10149):777-786. doi: 10.1016/S0140-6736(18)31268-6. Epub 2018 Aug 9.
6
BS-Seeker3: ultrafast pipeline for bisulfite sequencing.
BMC Bioinformatics. 2018 Apr 3;19(1):111. doi: 10.1186/s12859-018-2120-7.
7
A comprehensive evaluation of alignment software for reduced representation bisulfite sequencing data.
Bioinformatics. 2018 Aug 15;34(16):2715-2723. doi: 10.1093/bioinformatics/bty174.
8
msgbsR: An R package for analysing methylation-sensitive restriction enzyme sequencing data.
Sci Rep. 2018 Feb 1;8(1):2190. doi: 10.1038/s41598-018-19655-w.
9
Bicycle: a bioinformatics pipeline to analyze bisulfite sequencing data.
Bioinformatics. 2018 Apr 15;34(8):1414-1415. doi: 10.1093/bioinformatics/btx778.
10
DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):E7526-E7535. doi: 10.1073/pnas.1703087114. Epub 2017 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验